A120687 Integers m such that the sequence defined by f(0)=m and f(n+1)=2+gpf(f(n)), with gpf(n) being the greatest prime factor of n (A006530), ends up in the period 3 cycle 7 -> 9 -> 5 -> 7 -> ...
7, 11, 14, 21, 22, 28, 33, 35, 37, 41, 42, 44, 49, 55, 56, 63, 66, 67, 70, 71, 74, 77, 79, 82, 83, 84, 88, 89, 98, 99, 105, 110, 111, 112, 113, 121, 123, 126, 127, 132, 134, 137, 140, 142, 147, 148, 151, 154, 158, 164, 165, 166, 167, 168, 175, 176, 178, 179, 185, 189
Offset: 0
Keywords
Examples
Oscillation between 5,7,9: 2+gpf(5)=2+5=7; 2+gpf(7)=2+7=9; 2+gpf(9)=2+3=5. Fixed point is 4: 2+gpf(4)=2+2=4.
Programs
-
Mathematica
fi = Function[n, FactorInteger[n][[ -1, 1]] + 2]; mn = Map[(NestList[fi, #, 6][[ -1]]) &, Range[2, 200]]; Cc4 = Flatten[Position[mn, 4]] + 1;Cc5 = Flatten[Position[mn, 5]] + 1; Cc7 = Flatten[Position[mn, 7]] + 1;Cc9 = Flatten[Position[mn, 9]] + 1; Cc7
Comments