A120686 Integers m such that the sequence defined by f(0)=m and f(n+1)=2+gpf(f(n)), with gpf(n) being the greatest prime factor of n (A006530), ends up in the period 3 cycle 5 -> 7 -> 9 -> 5 -> ...
5, 10, 15, 19, 20, 25, 30, 31, 38, 40, 45, 47, 50, 53, 57, 60, 61, 62, 75, 76, 80, 90, 93, 94, 95, 97, 100, 103, 106, 109, 114, 120, 122, 124, 125, 133, 135, 141, 149, 150, 152, 155, 159, 160, 163, 171, 173, 180, 183, 186, 188, 190, 191, 194, 199, 200
Offset: 0
Keywords
Examples
Oscillation between 5,7,9: 2+gpf(5)=2+5=7; 2+gpf(7)=2+7=9; 2+gpf(9)=2+3=5. Fixed point is 4: 2+gpf(4)=2+2=4.
Programs
-
Mathematica
fi = Function[n, FactorInteger[n][[ -1, 1]] + 2]; mn = Map[(NestList[fi, #, 6][[ -1]]) &, Range[2, 200]]; Cc4 = Flatten[Position[mn, 4]] + 1;Cc5 = Flatten[Position[mn, 5]] + 1; Cc7 = Flatten[Position[mn, 7]] + 1;Cc9 = Flatten[Position[mn, 9]] + 1; Cc5
Comments