A120688 Integers m such that the sequence defined by f(0)=m and f(n+1)=2+gpf(f(n)), with gpf(n) being the greatest prime factor of n (A006530), ends up in the period 3 cycle 9 -> 5 -> 7 -> 9 -> ...
3, 6, 9, 12, 13, 17, 18, 23, 24, 26, 27, 29, 34, 36, 39, 43, 46, 48, 51, 52, 54, 58, 59, 65, 68, 69, 72, 73, 78, 81, 85, 86, 87, 91, 92, 96, 101, 102, 104, 107, 108, 115, 116, 117, 118, 119, 129, 130, 131, 136, 138, 139, 143, 144, 145, 146, 153, 156, 157, 161, 162
Offset: 0
Keywords
Examples
Oscillation between 5,7,9: 2+gpf(5)=2+5=7; 2+gpf(7)=2+7=9; 2+gpf(9)=2+3=5. Fixed point is 4: 2+gpf(4)=2+2=4.
Programs
-
Mathematica
fi = Function[n, FactorInteger[n][[ -1, 1]] + 2]; mn = Map[(NestList[fi, #, 6][[ -1]]) &, Range[2, 200]]; Cc4 = Flatten[Position[mn, 4]] + 1;Cc5 = Flatten[Position[mn, 5]] + 1; Cc7 = Flatten[Position[mn, 7]] + 1;Cc9 = Flatten[Position[mn, 9]] + 1; Cc9
Comments