A120701 Number of unit circles which fit touching a circle of radius n-1, i.e., with their centers on a circle of radius n.
2, 6, 9, 12, 15, 18, 21, 25, 28, 31, 34, 37, 40, 43, 47, 50, 53, 56, 59, 62, 65, 69, 72, 75, 78, 81, 84, 87, 91, 94, 97, 100, 103, 106, 109, 113, 116, 119, 122, 125, 128, 131, 135, 138, 141, 144, 147, 150, 153, 157, 160, 163, 166, 169, 172, 175, 179, 182, 185, 188
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
R:= RealField(30); [Floor(Pi(R)/Arcsin(1/n)) : n in [1..70]]; // G. C. Greubel, Aug 25 2023
-
Mathematica
Table[Floor[Pi/ArcSin[1/n]], {n, 60}] (* Indranil Ghosh, Jul 21 2017 *)
-
Python
from mpmath import mp, pi, asin mp.dps=100 def a(n): return int(floor(pi/asin(1./n))) print([a(n) for n in range(1, 61)]) # Indranil Ghosh, Jul 21 2017
-
SageMath
[floor(pi/arcsin(1/n)) for n in range(1,71)] # G. C. Greubel, Aug 25 2023
Formula
a(n) = floor(Pi/arcsin(1/n)).
Comments