A120737 Numbers k whose number of divisors d(k) is divisible by every prime factor of k.
1, 2, 8, 9, 12, 18, 32, 72, 80, 96, 108, 128, 243, 288, 448, 486, 512, 625, 720, 768, 864, 972, 1152, 1200, 1250, 1620, 1944, 2000, 2025, 2048, 2560, 2592, 3888, 4032, 4050, 4608, 5000, 5625, 6144, 6561, 6912, 7500, 7776, 8192, 8748, 9408, 10800, 11250
Offset: 1
Keywords
Examples
d(32) = 6. 2 is the only prime dividing 32. 2 divides 6, so 32 is in the sequence.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000 (terms 1..100 from Paolo P. Lava)
Programs
-
Maple
isA120737 := proc(n) local d,p; d := numtheory[tau](n) ; p := 2 ; while p <= n do if ( n mod p ) = 0 then if ( d mod p ) <> 0 then RETURN(false) ; fi ; fi ; p := nextprime(p) ; od ; RETURN(true) ; end: for n from 1 to 12000 do if isA120737(n) then printf("%d,",n) ; fi ; od ; # R. J. Mathar, Aug 17 2006
-
Mathematica
divQ[n_] := AllTrue[FactorInteger[n][[;; , 1]], Divisible[DivisorSigma[0, n], #] &]; Select[Range[10^4], divQ] (* Amiram Eldar, Nov 08 2020 *)
-
PARI
isok(k) = Mod(numdiv(k), k)^eulerphi(k) == 0; \\ Michel Marcus, May 11 2019
Extensions
More terms from R. J. Mathar, Aug 17 2006
Name simplified by Jon E. Schoenfield, Mar 03 2019
Comments