cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120737 Numbers k whose number of divisors d(k) is divisible by every prime factor of k.

Original entry on oeis.org

1, 2, 8, 9, 12, 18, 32, 72, 80, 96, 108, 128, 243, 288, 448, 486, 512, 625, 720, 768, 864, 972, 1152, 1200, 1250, 1620, 1944, 2000, 2025, 2048, 2560, 2592, 3888, 4032, 4050, 4608, 5000, 5625, 6144, 6561, 6912, 7500, 7776, 8192, 8748, 9408, 10800, 11250
Offset: 1

Views

Author

Leroy Quet, Jun 29 2006

Keywords

Comments

Numbers k such that A000005(k)/A007947(k) is an integer. A070226 is a subsequence of this sequence. Conjecture: If A000005(k) divides A007947(k) for some k, then A007947(k)/A000005(k)=1. - Ctibor O. Zizka, Feb 05 2009
This sequence contains exactly those positive integers k where 1 is the only positive divisor of k that is coprime to d(k). - Leroy Quet, May 23 2009

Examples

			d(32) = 6. 2 is the only prime dividing 32. 2 divides 6, so 32 is in the sequence.
		

Crossrefs

Programs

  • Maple
    isA120737 := proc(n) local d,p; d := numtheory[tau](n) ; p := 2 ; while p <= n do if ( n mod p ) = 0 then if ( d mod p ) <> 0 then RETURN(false) ; fi ; fi ; p := nextprime(p) ; od ; RETURN(true) ; end: for n from 1 to 12000 do if isA120737(n) then printf("%d,",n) ; fi ; od ;
    # R. J. Mathar, Aug 17 2006
  • Mathematica
    divQ[n_] := AllTrue[FactorInteger[n][[;; , 1]], Divisible[DivisorSigma[0, n], #] &]; Select[Range[10^4], divQ] (* Amiram Eldar, Nov 08 2020 *)
  • PARI
    isok(k) = Mod(numdiv(k), k)^eulerphi(k) == 0; \\ Michel Marcus, May 11 2019

Extensions

More terms from R. J. Mathar, Aug 17 2006
Name simplified by Jon E. Schoenfield, Mar 03 2019