A120759 Eigensequence for subpartitions of a partition.
1, 2, 5, 24, 527, 271156, 73452582161, 5395271857717411958088, 29108958418479344853405820427519529324955406, 847331460208759521535495911124086692972161538057881358236684093384849875943910959287454
Offset: 0
Examples
At n=4, the recurrence gives: a(4) = a(3)^2 + 1 - Sum_{k=0..2} (-1)^(4-k)*a(k)*C(a(k),4-k) = a(3)^2 + 1 - [a(0)*C(a(0),4) - a(1)*C(a(1),3) + a(2)*C(a(2),2)] = 24^2 + 1 - [1*0 - 2*0 + 5*C(5,2)] = 24^2 + 1 - 5*10 = 527. The recurrence extracts a(n) from the g.f.: 1/(1-x) = 1*(1-x) + 2*x*(1-x)^2 + 5*x^2*(1-x)^5 + 24*x^3*(1-x)^24 +... + a(n)*x^n*(1-x)^a(n) +... The number of digits of a(n) base 10 begins: [1,1,1,2,3,6,11,22,44,87,174,348,696,1391,...]
Crossrefs
Cf. A115728.
Programs
-
PARI
a(n)=if(n==0,1,a(n-1)^2+1-sum(k=0,n-2,(-1)^(n-k)*a(k)*binomial(a(k),n-k)))
-
PARI
a(n)=polcoeff(x^n-sum(k=0, n-1, a(k)*x^k*(1-x+x*O(x^n))^a(k)), n)
Formula
a(n) = a(n-1)^2 + 1 - Sum_{k=0..n-2} (-1)^(n-k)*a(k)*C(a(k),n-k) for n>=1, with a(0)=1.
G.f.: 1/(1-x) = Sum_{n>=0} a(n)*x^n*(1-x)^a(n).
Comments