A120777 a(n) = 2^(2*n - valuation(CatalanNumber(n), 2)).
1, 4, 8, 64, 128, 512, 1024, 16384, 32768, 131072, 262144, 2097152, 4194304, 16777216, 33554432, 1073741824, 2147483648, 8589934592, 17179869184, 137438953472, 274877906944, 1099511627776, 2199023255552, 35184372088832, 70368744177664, 281474976710656, 562949953421312
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, Combinatorial Identities Associated with a Multidimensional Polynomial Sequence, J. Int. Seq., Vol. 21 (2018), Article 18.7.4.
Crossrefs
Programs
-
Maple
a := n -> denom(binomial(2*n+2, n+1) / 2^(2*n+1)): seq(a(n), n=0..22); # Johannes W. Meijer, Sep 23 2012 Conjecture: The following Maple program appears to generate this sequence! Z[0]:=0: for k to 30 do Z[k]:=simplify(1/(2-z*Z[k-1])) od: g:=sum((Z[j]-Z[j-1]), j=1..30): gser:=series(g, z=0, 27): seq(denom(coeff(gser, z, n))/2, n=0..22); # Zerinvary Lajos, May 21 2008 a := proc(n) option remember: if n = 0 then b(0):=0 else b(n) := b(n-1) + A001511(n+1) fi: a(n) := 2^b(n) end proc: A001511 := proc(n) option remember: if n = 1 then 1 else procname(n-1) + (-1)^n * procname(floor(n/2)) fi: end proc: seq(a(n), n=0..22); # Johannes W. Meijer, Jul 06 2009, revised Sep 23 2012
-
Mathematica
Table[Denominator[CatalanNumber[k]/(-4)^k], {k, 0, 22}] (* Jean-François Alcover, Jun 21 2013 *) (* Alternative: *) A120777[n_] := 2^(2*n - IntegerExponent[CatalanNumber[n], 2]); Table[A120777[n], {n, 0, 26}] (* Peter Luschny, Apr 16 2024 *)
Formula
a(n) = denominator(r(n)), with the rationals r(n) defined under A120088.
From Johannes W. Meijer, Jul 06 2009: (Start)
a(n) = denominator(C(2*n+2,n+1)/2^(2*n+1)).
If b(n) = log(a(n))/log(2) then c(n) = b(n+1)-b(n) = A001511(n+1) i.e. the ruler function. (End)
Extensions
New name by Peter Luschny, Apr 16 2024
Comments