cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A120785 Denominators of partial sums of Catalan numbers scaled by powers of 1/16.

Original entry on oeis.org

1, 16, 128, 4096, 32768, 524288, 4194304, 268435456, 2147483648, 34359738368, 274877906944, 8796093022208, 70368744177664, 1125899906842624, 9007199254740992, 1152921504606846976
Offset: 0

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Comments

Numerators are given under A120784.
The listed numbers coincide with the denominators of sum(C(k)/(-16)^k,k=0..n). For the numerators see A120794. In general these denominators may be different. See e.g. A120783 versus A120793 and A120787 versus A120796.
Also one fourth of denominators of partial sums for sqrt(2)+sqrt(3). See A121503 for the numerators.

Formula

a(n)=denominator(r(n)), with the rationals r(n):=sum(C(k)/16^k,k=0..n) with C(k):=A000108(k) (Catalan numbers).

A121012 Numerators of partial alternating sums of Catalan numbers scaled by powers of 1/(11^2) = 1/121.

Original entry on oeis.org

1, 120, 14522, 1757157, 212616011, 25726537289, 282991910191, 34242021133072, 4143284557101842, 501337431409322440, 667280121205808184436, 80740894665902790257970, 9769648254574237621422382
Offset: 0

Views

Author

Wolfdieter Lang, Aug 16 2006

Keywords

Comments

Denominators are given under A121013.
This is the second member (p=2) of the fourth (normalized) p-family of partial sums of normalized scaled Catalan series CsnIV(p):=sum(((-1)^k)*C(k)/L(2*p+1)^(2*k),k=0..infinity) with limit L(2*p+1)*(-F(2*p+2) + F(2*p+1)*phi) = L(2*p+1)/phi^(2*p+1), with C(n)=A000108(n) (Catalan), F(n)= A000045(n) (Fibonacci), L(n) = A000032(n) (Lucas) and phi:=(1+sqrt(5))/2 (golden section).
The partial sums of the above mentioned fourth p-family are rIV(p;n):=sum(((-1)^k)*C(k)/L(2*p+1)^(2*k),k=0..n), n>=0, for p=1,...
For more details on this p-family and the other three ones see the W. Lang link under A120996.

Examples

			Rationals r(n): [1, 120/121, 14522/14641, 1757157/1771561,
212616011/214358881, 25726537289/25937424601,...].
		

Crossrefs

The first member is A120794/A120785. The third member is A121498/A121499.

Programs

  • Maple
    The limit lim_{n->infinity} (r(n) := rIV(2;n)) = 11*(-8 + 5*phi) = 11/phi^5 = 0.9918693812443 (maple10, 10 digits).

Formula

a(n)=numerator(r(n)) with r(n) := rIV(p=2,n) = sum(((-1)^k)*C(k)/L(2*2+1)^(2*k), k=0..n), with L(5)=11 and C(k):=A000108(k) (Catalan). The rationals r(n) are given in lowest terms.

A121013 Denominators of partial alternating sums of Catalan numbers scaled by powers of 1/(11^2) = 1/121.

Original entry on oeis.org

1, 121, 14641, 1771561, 214358881, 25937424601, 285311670611, 34522712143931, 4177248169415651, 505447028499293771, 672749994932560009201, 81402749386839761113321, 9849732675807611094711841
Offset: 0

Views

Author

Wolfdieter Lang, Aug 16 2006

Keywords

Comments

This is the second member (p=2) of the fourth (normalized) p-family of partial sums of the normalized scaled Catalan series CsnIV(p):=sum(((-1)^k)*C(k)/L(2*p+1)^(2*k),k=0..infinity) with limit L(2*p+1)*(-F(2*p+2) + F(2*p+1)*phi) = L(2*p+1)/phi^(2*p+1), where C(n)=A000108(n) (Catalan), F(n)= A000045(n) (Fibonacci), L(n) = A000032(n) (Lucas) and phi:=(1+sqrt(5))/2 (golden section).
The partial sums of the above mentioned fourth p-family are rIV(p;n):=sum(((-1)^k)*C(k)/L(2*p+1)^(2*k),k=0..n), n>=0, for p=1,...
For more details on this p-family and the other three ones see the W. Lang links under A120996 and A121012.

Examples

			Rationals r(n): [1, 120/121, 14522/14641, 1757157/1771561, 212616011/214358881, 25726537289/25937424601,...].
		

Crossrefs

The first member is A120794/A120785. The third member is A121498/A121499.

Formula

a(n)=denominator(r(n)) with r(n) := rIV(p=2,n) = sum(((-1)^k)*C(k)/L(2*2+1)^(2*k), k=0..n), with L(5)=11 and C(k):=A000108(k) (Catalan). The rationals r(n) are given in lowest terms.
Showing 1-3 of 3 results.