A121503
Numerators of partial sums of a series for sqrt(2) + sqrt(3) involving Catalan numbers.
Original entry on oeis.org
13, 203, 1615, 51595, 412529, 6599099, 52788535, 3378355987, 27026481101, 432421205841, 3459361042977, 110699432952143, 885595037556565, 14169517557800915, 113356129507566775, 14509583941597490435
Offset: 0
Rationals r(n): [13/4, 203/64, 1615/512, 51595/16384, 412529/131072, 6599099/2097152, 52788535/16777216,...].
- K. R. Popper, Die Welt des Parmenides, Piper, 2001, 2005. Ch. 8: Platon und die Geometrie (1950), pp. 326-337. English: The World of Parmenides, Routledge, London, New York, 1998.
-
a(n) = numerator(4 - sum(k=0, n, binomial(2*k,k)/(k+1)*(1+2^(k+1))/16^k)/4); \\ Michel Marcus, Sep 20 2023
A121012
Numerators of partial alternating sums of Catalan numbers scaled by powers of 1/(11^2) = 1/121.
Original entry on oeis.org
1, 120, 14522, 1757157, 212616011, 25726537289, 282991910191, 34242021133072, 4143284557101842, 501337431409322440, 667280121205808184436, 80740894665902790257970, 9769648254574237621422382
Offset: 0
Rationals r(n): [1, 120/121, 14522/14641, 1757157/1771561,
212616011/214358881, 25726537289/25937424601,...].
A121013
Denominators of partial alternating sums of Catalan numbers scaled by powers of 1/(11^2) = 1/121.
Original entry on oeis.org
1, 121, 14641, 1771561, 214358881, 25937424601, 285311670611, 34522712143931, 4177248169415651, 505447028499293771, 672749994932560009201, 81402749386839761113321, 9849732675807611094711841
Offset: 0
Rationals r(n): [1, 120/121, 14522/14641, 1757157/1771561, 212616011/214358881, 25726537289/25937424601,...].
A120794
Numerators of partial sums of Catalan numbers scaled by powers of -1/16.
Original entry on oeis.org
1, 15, 121, 3867, 30943, 495067, 3960569, 253475987, 2027808611, 32444935345, 259559486959, 8305903553295, 66447228478363, 1063155655468083, 8505245244078969, 1088671391232413187
Offset: 0
Rationals r(n): [1, 15/16, 121/128, 3867/4096, 30943/32768, 495067/524288, 3960569/4194304,...].
A120784
Numerators of partial sums of Catalan numbers scaled by powers of 1/16.
Original entry on oeis.org
1, 17, 137, 4389, 35119, 561925, 4495433, 287708141, 2301665843, 36826655919, 294613251551, 9427624079025, 75420992684203, 1206735883132973, 9653887065398089, 1235697544380650237
Offset: 0
Rationals r(n): [1, 17/16, 137/128, 4389/4096, 35119/32768, 561925/524288, 4495433/4194304, 287708141/268435456,...].
A121504
Numerators of partial sums of a series used for the series of sqrt(2) + sqrt(3) involving Catalan numbers.
Original entry on oeis.org
3, 53, 433, 13941, 111759, 1789509, 14320329, 916611309, 7333257267, 117334608047, 938685468127, 30038055403185, 240304869286059, 3844880951681069, 30759058568289097, 3937160132112061181
Offset: 0
Rationals r(n): [3, 53/16, 433/128, 13941/4096, 111759/32768,
1789509/524288, 14320329/4194304, 916611309/268435456,...].
A121503/(4*
A120785) are the partial sums of a series for sqrt(2)+sqrt(3).
-
[Numerator( (&+[Binomial(2*k,k)*(1 + 2^(k+1))/(16^k*(k+1)): k in [0..n]]) ): n in [0..30]]; // G. C. Greubel, Sep 27 2018
-
Table[Numerator[Sum[CatalanNumber[k]*(1 + 2^(k + 1))/16^k, {k, 0, n}]], {n, 0, 50}] (* G. C. Greubel, Sep 27 2018 *)
-
for(n=0, 30, print1(numerator(sum(k=0,n, binomial(2*k,k)*(1 + 2^(k+1))/(16^k*(k+1)))), ", ")) \\ G. C. Greubel, Sep 27 2018
Showing 1-6 of 6 results.
Comments