cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120803 Number of series-reduced balanced trees with n leaves.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 4, 8, 9, 16, 20, 37, 47, 80, 111, 183, 256, 413, 591, 940, 1373, 2159, 3214, 5067, 7649, 12054, 18488, 29203, 45237, 71566, 111658, 176710, 276870, 437820, 687354, 1085577, 1705080, 2688285, 4221333, 6644088, 10425748
Offset: 1

Views

Author

Keywords

Comments

In other words, rooted trees with all leaves at the same level and no node having exactly one child; the order of children is not significant.

Examples

			From _Gus Wiseman_, Oct 07 2018: (Start)
The a(10) = 16 series-reduced balanced rooted trees:
  (oooooooooo)
  ((ooooo)(ooooo))
  ((oooo)(oooooo))
  ((ooo)(ooooooo))
  ((oo)(oooooooo))
  ((ooo)(ooo)(oooo))
  ((oo)(oooo)(oooo))
  ((oo)(ooo)(ooooo))
  ((oo)(oo)(oooooo))
  ((oo)(oo)(ooo)(ooo))
  ((oo)(oo)(oo)(oooo))
  ((oo)(oo)(oo)(oo)(oo))
  (((oo)(ooo))((oo)(ooo)))
  (((oo)(oo))((ooo)(ooo)))
  (((oo)(oo))((oo)(oooo)))
  (((oo)(oo))((oo)(oo)(oo)))
(End)
		

Crossrefs

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(u=vector(n), v=vector(n)); u[1]=1; while(u, v+=u; u=EulerT(u)-u); v} \\ Andrew Howroyd, Oct 26 2018

Formula

Let s_0(n) = 1 if n = 1, 0 otherwise; s_{k+1}(n) = EULER(s_k)(n) - s_k(n), where EULER is the Euler transform. Then a_n = sum_k s_k(n). (s_k(n) is the number of such trees of height k.) Note that s_k(n) = 0 for n < 2^k.