A120803 Number of series-reduced balanced trees with n leaves.
1, 1, 1, 2, 2, 4, 4, 8, 9, 16, 20, 37, 47, 80, 111, 183, 256, 413, 591, 940, 1373, 2159, 3214, 5067, 7649, 12054, 18488, 29203, 45237, 71566, 111658, 176710, 276870, 437820, 687354, 1085577, 1705080, 2688285, 4221333, 6644088, 10425748
Offset: 1
Keywords
Examples
From _Gus Wiseman_, Oct 07 2018: (Start) The a(10) = 16 series-reduced balanced rooted trees: (oooooooooo) ((ooooo)(ooooo)) ((oooo)(oooooo)) ((ooo)(ooooooo)) ((oo)(oooooooo)) ((ooo)(ooo)(oooo)) ((oo)(oooo)(oooo)) ((oo)(ooo)(ooooo)) ((oo)(oo)(oooooo)) ((oo)(oo)(ooo)(ooo)) ((oo)(oo)(oo)(oooo)) ((oo)(oo)(oo)(oo)(oo)) (((oo)(ooo))((oo)(ooo))) (((oo)(oo))((ooo)(ooo))) (((oo)(oo))((oo)(oooo))) (((oo)(oo))((oo)(oo)(oo))) (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} seq(n)={my(u=vector(n), v=vector(n)); u[1]=1; while(u, v+=u; u=EulerT(u)-u); v} \\ Andrew Howroyd, Oct 26 2018
Formula
Let s_0(n) = 1 if n = 1, 0 otherwise; s_{k+1}(n) = EULER(s_k)(n) - s_k(n), where EULER is the Euler transform. Then a_n = sum_k s_k(n). (s_k(n) is the number of such trees of height k.) Note that s_k(n) = 0 for n < 2^k.
Comments