A120811 Positive integers n such that n+d+1 is prime for all proper divisors d of n. Generalization of twin prime to all integers.
3, 5, 9, 11, 17, 27, 29, 35, 39, 41, 59, 65, 71, 101, 107, 125, 137, 149, 179, 191, 197, 227, 237, 239, 269, 281, 305, 311, 347, 417, 419, 431, 437, 461, 521, 569, 597, 599, 617, 641, 659, 671, 749, 755, 809, 821, 827, 857, 881, 905, 935, 989, 1019, 1031, 1049
Offset: 1
Keywords
Examples
a(6)=27 since proper divisors={1,3,3^2} and 27+d+1={29,31,37} are all prime. a(3980)=3^3*13147 since proper divisors={1,3,3^2,3^3,13147,3*13147,3^2*13147} and a(3980)+d+1={354971,354973,354979,354997,368117,394411,473293} are all prime.
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
Programs
-
Maple
with(numtheory); L:=[]: for w to 1 do for k from 1 while nops(L)<=5000 do x:=2*k+1; if isprime(x+2) then S:=divisors(x) minus {x}; Q:=map(z-> x+z+1, S); if andmap(isprime,Q) then fd:=fopen("C:/temp/n+d+1=prime-lower.txt",APPEND); fprintf(fd,"%d",x); fclose(fd); L:=[op(L),x]; print(nops(L),ifactor(x)); fi; #Q fi; #x od od;
-
Mathematica
Select[Range[2,1100],AllTrue[#+Most[Divisors[#]]+1,PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 22 2020 *)
Formula
a(n)=n-th number such that n+d+1 is prime for all proper divisors d of n.
Comments