A120843 Initial digit of the (10^n)-th prime.
2, 2, 5, 7, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0
Examples
The (10^3)-th prime is 7919, so a(3)=7.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
f[n_] := RealDigits[ n (Log[n] + Log[Log[n]] - 1 + (Log[Log[n]] - 2)/Log[n] - (Log[Log[n]]^2 - 6 Log[Log[n]] + 11)/(2 Log[n]^2)), 10, 10][[1, 1]]; f[1] = f[10] = 2; f[100] = 5; Array[ f[10^#] &, 105, 0] (* Robert G. Wilson v, Jan 15 2017 *)
-
PARI
g(n) = print1(2", "); for(x=1, n, y=Vec(Str(primex(10^x))); print1(y[1]", ")) primex(n) = /* Efficient Algorithm to accurately approximate the n-th prime */ { local(x, px, r1, r2, r, p10, b, e); b=10; /*Select base*/ p10=log(n)/log(10); /*p10=pow of 10 n is to adjust in b^p10*/ if(Rg(b^p10*log(b^(p10+1)))< b^p10, m=p10+1, m=p10); r1 = 0; r2 = 2.718281828; /*Real kicker. if 1, it fails at 1e117*/ for(x=1, 360, r=(r1+r2)/2; px = Rg(b^p10*log(b^(m+r))); if(px <= b^p10, r1=r, r2=r); r=(r1+r2)/2.; ); (b^p10*log(b^(m+r))+.5); } Rg(x) = /* Gram's Riemann's Approx of Pi(x) */{ local(n=1, L, s=1, r); L=r=log(x); while(s<10^100*r, s=s+r/zeta(n+1)/n; n=n+1; r=r*L/n); (s) }
Formula
a(n) = most significant digit of A006988(n). - Robert G. Wilson v, Jan 17 2017
Comments