A120859 Dispersion of the sequence ([r*n] + 1: n >= 1), where r = 3 + 8^(1/2): square array D(n,m) (n, m >= 1), read by ascending antidiagonals.
1, 2, 6, 3, 12, 35, 4, 18, 70, 204, 5, 24, 105, 408, 1189, 7, 30, 140, 612, 2378, 6930, 8, 41, 175, 816, 3567, 13860, 40391, 9, 47, 239, 1020, 4756, 20790, 80782, 235416, 10, 53, 274, 1393, 5945, 27720, 121173, 470832, 1372105, 11, 59, 309, 1597, 8119
Offset: 1
Examples
Northwest corner: 1, 6, 35, 204, 1189, ... 2, 12, 70, 408, 2378, ... 3, 18, 105, 612, 3567, ... 4, 24, 140, 816, 4756, ... 5, 30, 175, 1020, 5945, ... ... [Corrected by _Petros Hadjicostas_, Jul 07 2020] In row 1, we have 6 = [r] + 1, 35 = [6*r], 204 = [35*r] + 1, etc., where r = 3 + 8^(1/2); each new row starts with the least "new" number n, followed by [n*r] + 1, [[n*r + 1]*r + 1], [[[n*r + 1]*r + 1]*r] + 1, and so on.
Links
- Clark Kimberling, The equation (j+k+1)^2 - 4*k = Q*n^2 and related dispersions, Journal of Integer Sequences, 10 (2007), Article #07.2.7.
- N. J. A. Sloane, Classic Sequences.
- Eric Weisstein's World of Mathematics, Beatty sequence.
- Wikipedia, Beatty sequence.
Programs
-
PARI
tabls(nn)={default("realprecision", 1000); my(D=matrix(nn, nn)); r = 3 + 8^(1/2); s=r/(r-1); for(n=1, nn, D[n, 1]=floor(s*(n-1))+1); for(m=2, nn, for(n=1, nn, D[n, m]=floor(r*D[n, m-1])+1)); D} /* To print the array flattened */ flat(nn)={D=tabls(nn); for(n=1, nn, for(m=1, n, print1(D[n+1-m, m], ", ")))} /* To print the square array */ square(nn)={D=tabls(nn); for(n=1, nn, for(m=1, nn, print1(D[n, m], ", ")); print())} \\ Petros Hadjicostas, Jul 07 2020
Formula
(1) Column 1 is the sequence ([s*(n-1)] + 1: n >= 1), where 1/r + 1/s = 1. The numbers in all the other columns, arranged in increasing order, form the sequence ([r*n] + 1: n >= 1).
(2) Every row satisfies these recurrences: x(n+1) = [r*x(n)] + 1 and x(n+2) = 6*x(n+1) - x(n).
Extensions
Name edited by Petros Hadjicostas, Jul 07 2020
Comments