cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120879 G.f. satisfies: A(x) = A(x^3)*(1 + 3*x + 2*x^2).

Original entry on oeis.org

1, 3, 2, 3, 9, 6, 2, 6, 4, 3, 9, 6, 9, 27, 18, 6, 18, 12, 2, 6, 4, 6, 18, 12, 4, 12, 8, 3, 9, 6, 9, 27, 18, 6, 18, 12, 9, 27, 18, 27, 81, 54, 18, 54, 36, 6, 18, 12, 18, 54, 36, 12, 36, 24, 2, 6, 4, 6, 18, 12, 4, 12, 8, 6, 18, 12, 18, 54, 36, 12, 36, 24, 4, 12, 8, 12, 36, 24, 8, 24, 16, 3, 9
Offset: 0

Views

Author

Paul D. Hanna, Jul 11 2006

Keywords

Comments

a(n) = 3^A062756(n) * 2^A081603(n), where A062756(n) is the number of 1's and A081603(n) is the number of 2's, in the ternary expansion of n.
More generally, if g.f. of {a(n)} satisfies: A(x) = A(x^d)*(1+Sum_{k=1..d-1} c(k)*x^k), then a(n) = Product_{k=1..d-1} c(k)^digits(n,k,d), where digits(n,k,d) is the number of k's in the d-ary expansion of n and d is any integer > 1. This sequence is a simple example for d=3 with c(1)=3 and c(2)=2.

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,floor(log(n+1)/log(3))+1, A=subst(A,x,x^3+x*O(x^n))*(1+3*x+2*x^2));polcoeff(A,n,x)}
    
  • PARI
    /* Recurrence: */ {a(n)=if(n==0,1,a(n\3)*3^((n%3)%2)*2^((n%3)\2))}

Formula

G.f.: A(x) = Product_{n>=0} (1 + x^(3^n))*(1 + 2*x^(3^n)).
a(n) = a(floor(n/3)) * 3^((n mod 3) mod 2) * 2^floor((n mod 3)/2) with a(0)=1.