A120894 Cascadence of 1+x+x^2; a triangle, read by rows of 2n+1 terms, that retains its original form upon convolving each row with [1,1,1] and then letting excess terms spill over from each row into the initial positions of the next row such that only 2n+1 terms remain in row n for n>=0.
1, 1, 1, 1, 2, 3, 2, 1, 2, 5, 7, 6, 5, 3, 2, 5, 12, 18, 18, 14, 10, 10, 7, 5, 12, 30, 48, 50, 42, 34, 27, 22, 24, 17, 12, 30, 78, 128, 140, 126, 103, 83, 73, 63, 53, 59, 42, 30, 78, 206, 346, 394, 369, 312, 259, 219, 189, 175, 154, 131, 150, 108, 78, 206, 552, 946, 1109
Offset: 0
Examples
Triangle begins: 1; 1, 1, 1; 2, 3, 2, 1, 2; 5, 7, 6, 5, 3, 2, 5; 12, 18, 18, 14, 10, 10, 7, 5, 12; 30, 48, 50, 42, 34, 27, 22, 24, 17, 12, 30; 78, 128, 140, 126, 103, 83, 73, 63, 53, 59, 42, 30, 78; 206, 346, 394, 369, 312, 259, 219, 189, 175, 154, 131, 150, 108, 78, 206; 552, 946, 1109, 1075, 940, 790, 667, 583, 518, 460, 435, 389, 336, 392, 284, 206, 552; 1498, 2607, 3130, 3124, 2805, 2397, 2040, 1768, 1561, 1413, 1284, 1160, 1117, 1012, 882, 1042, 758, 552, 1498; ... Convolution of [1,1,1] with each row produces: [1,1,1]*[1] = [1,1,1]; [1,1,1]*[1,1,1] = [1,2,3,2,1]; [1,1,1]*[2,3,2,1,2] = [2,5,7,6,5,3,2]; [1,1,1]*[5,7,6,5,3,2,5] = [5,12,18,18,14,10,10,7,5]; [1,1,1]*[12,18,18,14,10,10,7,5,12] = [12,30,48,50,42,34,27,22,24,17,12]; ... These convoluted rows, when concatenated, yield the sequence: 1,1,1, 1,2,3,2,1, 2,5,7,6,5,3,2, 5,12,18,18,14,10,10,7,5, ... which equals the concatenated rows of this original triangle: 1, 1,1,1, 2,3,2,1,2, 5,7,6,5,3,2,5, 12,18,18,14,10,10,7,5,12, ...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..440
Crossrefs
Programs
-
PARI
T(n,k)=if(2*n
-
PARI
/* Generated by the G.F.: */ {T(n,k)=local(A,F=1+x+x^2,d=2,G=x,H=1+x,S=ceil(log(n+1)/log(d+1))); for(i=0,n,G=x*subst(F,x,G+x*O(x^n)));for(i=0,S,H=subst(H,x,x*G^d+x*O(x^n))*G/x); A=(x*H-y*subst(H,x,x*y^d +x*O(x^n)))/(x*subst(F,x,y)-y); polcoeff(polcoeff(A,n,x),k,y)} for(n=0, 10, for(k=0, 2*n, print1(T(n, k), ", ")); print()) \\ Paul D. Hanna, Jul 17 2006
Formula
G.f.: A(x,y) = ( x*H(x) - y*H(x*y^2) )/( x*F(y) - y ), where H(x) = G*H(x*G^2)/x, G = x*F(G), F(x)=1+x+x^2. - Paul D. Hanna, Jul 17 2006
Comments