A120898 Cascadence of 1+2x+x^2; a triangle, read by rows of 2n+1 terms, that retains its original form upon convolving each row with [1,2,1] and then letting excess terms spill over from each row into the initial positions of the next row such that only 2n+1 terms remain in row n for n>=0.
1, 2, 1, 2, 5, 6, 5, 2, 5, 16, 22, 18, 14, 12, 5, 16, 54, 78, 72, 58, 43, 38, 37, 16, 54, 186, 282, 280, 231, 182, 156, 128, 123, 124, 54, 186, 654, 1030, 1073, 924, 751, 622, 535, 498, 425, 418, 426, 186, 654, 2338, 3787, 4100, 3672, 3048, 2530, 2190, 1956, 1766
Offset: 0
Examples
Triangle begins: 1; 2, 1, 2; 5, 6, 5, 2, 5; 16, 22, 18, 14, 12, 5, 16; 54, 78, 72, 58, 43, 38, 37, 16, 54; 186, 282, 280, 231, 182, 156, 128, 123, 124, 54, 186; 654, 1030, 1073, 924, 751, 622, 535, 498, 425, 418, 426, 186, 654; 2338, 3787, 4100, 3672, 3048, 2530, 2190, 1956, 1766, 1687, 1456, 1452, 1494, 654, 2338; ... Convolution of [1,2,1] with each row produces: [1,2,1]*[1] = [1,2,1]; [1,2,1]*[2,1,2] = [2,5,6,5,2]; [1,2,1]*[5,6,5,2,5] = [5,16,22,18,14,12,5]; [1,2,1]*[16,22,18,14,12,5,16] = [16,54,78,72,58,43,38,37,16]; These convoluted rows, when concatenated, yield the sequence: 1,2,1, 2,5,6,5,2, 5,16,22,18,14,12,5, 16,54,78,72,58,43,38,37,16, ... which equals the concatenated rows of this original triangle: 1, 2,1,2, 5,6,5,2,5, 16,22,18,14,12,5,16, 54,78,72,58,43,38,37,16,54,
Links
Crossrefs
Programs
-
PARI
T(n,k)=if(2*n
-
PARI
/* Generated by the G.F.: */ {T(n,k)=local(A,F=1+2*x+x^2,d=2,G=x,H=1+x,S=ceil(log(n+1)/log(d+1))); for(i=0,n,G=x*subst(F,x,G+x*O(x^n)));for(i=0,S,H=subst(H,x,x*G^d+x*O(x^n))*G/x); A=(x*H-y*subst(H,x,x*y^d +x*O(x^n)))/(x*subst(F,x,y)-y); polcoeff(polcoeff(A,n,x),k,y)} for(n=0, 10, for(k=0, 2*n, print1(T(n, k), ", ")); print()) \\ Paul D. Hanna, Jul 17 2006
Formula
G.f.: A(x,y) = ( x*H(x) - y*H(x*y^2) )/( x*F(y) - y ), where H(x) = G*H(x*G^2)/x, G = x*F(G), F(x)=1+2x+x^2. - Paul D. Hanna, Jul 17 2006
Comments