A120900 G.f. satisfies: A(x) = C(x)*A(x^3*C(x)^4), where C(x) is the g.f. of the Catalan numbers (A000108).
1, 1, 2, 6, 19, 62, 209, 722, 2539, 9054, 32654, 118876, 436171, 1611067, 5984943, 22344455, 83786875, 315397144, 1191324649, 4513742858, 17149228138, 65318912291, 249356597492, 953902701488, 3656057618727, 14037222220896
Offset: 0
Keywords
Examples
A(x) = 1 + x + 2*x^2 + 6*x^3 + 19*x^4 + 62*x^5 + 209*x^6 + 722*x^7 +... = C(x) * A(x^3*C(x)^4) where C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +... is the g.f. of the Catalan numbers (A000108): C(x) = 1 + x*C(x)^2.
Programs
-
PARI
{a(n)=local(A=1+x,C=(1/x*serreverse(x/(1+2*x+x^2+x*O(x^n))))^(1/2)); for(i=0,n,A=C*subst(A,x,x^3*C^4 +x*O(x^n)));polcoeff(A,n,x)}
Comments