cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120900 G.f. satisfies: A(x) = C(x)*A(x^3*C(x)^4), where C(x) is the g.f. of the Catalan numbers (A000108).

Original entry on oeis.org

1, 1, 2, 6, 19, 62, 209, 722, 2539, 9054, 32654, 118876, 436171, 1611067, 5984943, 22344455, 83786875, 315397144, 1191324649, 4513742858, 17149228138, 65318912291, 249356597492, 953902701488, 3656057618727, 14037222220896
Offset: 0

Views

Author

Paul D. Hanna, Jul 14 2006

Keywords

Comments

Self-convolution equals A120899, which equals column 0 of triangle A120898 (cascadence of 1+2x+x^2).

Examples

			A(x) = 1 + x + 2*x^2 + 6*x^3 + 19*x^4 + 62*x^5 + 209*x^6 + 722*x^7 +...
= C(x) * A(x^3*C(x)^4) where
C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +...
is the g.f. of the Catalan numbers (A000108): C(x) = 1 + x*C(x)^2.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x,C=(1/x*serreverse(x/(1+2*x+x^2+x*O(x^n))))^(1/2)); for(i=0,n,A=C*subst(A,x,x^3*C^4 +x*O(x^n)));polcoeff(A,n,x)}