A120910 Triangle read by rows: T(n,k) is the number of ternary words of length n having k levels (n >= 1, 0 <= k <= n-1). A level is a pair of identical consecutive letters.
3, 6, 3, 12, 12, 3, 24, 36, 18, 3, 48, 96, 72, 24, 3, 96, 240, 240, 120, 30, 3, 192, 576, 720, 480, 180, 36, 3, 384, 1344, 2016, 1680, 840, 252, 42, 3, 768, 3072, 5376, 5376, 3360, 1344, 336, 48, 3, 1536, 6912, 13824, 16128, 12096, 6048, 2016, 432, 54, 3, 3072
Offset: 1
Examples
T(3,1)=12 because we have 001,002,011,022,100,110,112,122,200,211,220 and 221. Triangle starts: 3; 6, 3 12, 12, 3; 24, 36, 18, 3; 48, 96, 72, 24, 3;
Programs
-
Maple
T:=(n,k)->3*2^(n-k-1)*binomial(n-1,k): for n from 1 to 11 do seq(T(n,k),k=0..n-1) od; # yields sequence in triangular form
-
Mathematica
sol=Solve[{a==v(z^2+a z),b==v(z^2+b z),c==v(z^2+c z)},{a,b,c}];f[z_,u_]:=1/(1-3z-a-b-c)/.sol/.v->u-1;nn=10;Drop[Map[Select[#,#>0&]&,Level[CoefficientList[Series[f[z,u],{z,0,nn}],{z,u}],{2}]],1]//Grid (* Geoffrey Critzer, May 19 2014 *)
Formula
T(n,k) = 3*2^(n-k-1)*binomial(n-1,k).
G.f.: (1 - (y - 1)*x)/(1 - (y + 2)*x). Generally for the number of length n words with k levels on an m-ary alphabet (m>1): (1 - (y - 1)*x)/(1 - (y + m - 1)*x). - Geoffrey Critzer, May 19 2014
Comments