cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A120956 G.f. A(x) satisfies x / Series_Reversion(x*A(x)) = (A(x) + 1+x)/2.

Original entry on oeis.org

1, 1, 2, 8, 50, 412, 4120, 47840, 628130, 9164600, 146786980, 2557718352, 48147082520, 973612557504, 21050077835440, 484637221115520, 11839623684281890, 305949448095405252, 8339153054042801704
Offset: 0

Views

Author

Paul D. Hanna, Jul 19 2006

Keywords

Comments

The g.f. for A120955 = x / Series_Reversion(x*A(x)) = (A(x) + 1+x)/2.
a(n) = 2 (mod 4) when n = 2^k for k > 0. - Paul D. Hanna, Sep 21 2019
a(n) = 4 (mod 8) when n = A140138(k) for k > 0. - Paul D. Hanna, Sep 21 2019

Examples

			A(x) = 1 + x + 2*x^2 + 8*x^3 + 50*x^4 + 412*x^5 + 4120*x^6 +...
The g.f. of A120955 is:
x/series_reversion(x*A(x)) = 1 + x + x^2 + 4*x^3 + 25*x^4 + 206*x^5 +...
Compare terms to see that A120955(n) = a(n)/2 for n>=2.
A(x*A(x)) = 1 + x + 3*x^2 + 14*x^3 + 92*x^4 + 774*x^5 +...
A(x)*(2-x) = 2 + x + 3*x^2 + 14*x^3 + 92*x^4 + 774*x^5 +...
Contribution from _Paul D. Hanna_, Sep 04 2010: (Start)
Let G(x) = x*A(x), then
A(x) = 1 + G(x)/2 + G(G(x))/2^2 + G(G(G(x)))/2^3 + G(G(G(G(x))))/2^4 + G(G(G(G(G(x)))))/2^5 +...
The table of coefficients in the iterations of G(x) = x*A(x) begin:
[1, 1, 2, 8, 50, 412, 4120, 47840, 628130, ...];
[1, 2, 6, 27, 170, 1380, 13580, 155568, 2020526, ...];
[1, 3, 12, 63, 422, 3482, 34208, 389007, 5010678, ...];
[1, 4, 20, 122, 892, 7690, 76900, 878032, 11284106, ...];
[1, 5, 30, 210, 1690, 15490, 160464, 1864844, 24130948, ...];
[1, 6, 42, 333, 2950, 29002, 315184, 3775392, 49699640, ...];
[1, 7, 56, 497, 4830, 51100, 587104, 7318983, 98962072, ...];
[1, 8, 72, 708, 7512, 85532, 1043032, 13621120, 190640924, ...];
[1, 9, 90, 972, 11202, 137040, 1776264, 24394608, 355390206, ...]; ...
in which the following sum along column k equals a(k+1):
a(2) = 2 = 1/2 + 2/4 + 3/8+ 4/16 + 5/32 + 6/64 +...
a(3) = 8 = 2/2 + 6/4 + 12/8 + 20/16 + 30/32 + 42/64 + ...
a(4) = 50 = 8/2 + 27/4 + 63/8 + 122/16 + 210/32 + 333/64 +...
a(5) = 412 = 50/2 + 170/4 + 422/8 + 892/16 + 1690/32 + 2950/64 +... (End)
		

Crossrefs

Cf. A120955.

Programs

  • PARI
    {a(n)=local(A=[1,1]);for(i=1,n,A=concat(A,t); A[ #A]=subst(Vec(serreverse(x/Ser(A)))[ #A],t,0)); Vec(serreverse(x/Ser(A)))[n+1]}
    for(n=0,30, print1(a(n),", "))
    
  • PARI
    /* Prints N terms using x/Series_Reversion(x*A(x)) = (A(x) + 1+x)/2 */
    N = 30; {A=[1,1]; for(i=1,N, A = concat(A, -2*Vec(x/serreverse(x*Ser(concat(A,0))))[#A+1]); print1(i,",") );A} \\ Paul D. Hanna, Sep 21 2019

Formula

a(n) = 2*A120955(n) for n>=2.
G.f. A(x) satisfies:
(1) A( 2x/(A(x) + 1+x) ) = (A(x) + 1+x)/2.
(2) A(x) = F(x*A(x)) and F(x) = A(x/F(x)) where F(x) = g.f. of A120955.
(3) A(x) = (1 + A(x*A(x))) / (2-x).
(4) A(x) = 1 + Sum_{n>=0} G_n(x)/2^(n+1) where G(x)=x*A(x) and G_{n+1}(x) = G_n(x*A(x)) denotes iteration with G_0(x)=x. [From Paul D. Hanna, Sep 04 2010]

A249933 G.f. A(x) satisfies: 3*A(x) - 2*(1+x) = Series_Reversion( x/(2*A(x) - (1+x)) )/x.

Original entry on oeis.org

1, 1, 1, 7, 77, 1111, 19389, 391959, 8942541, 226359559, 6281444909, 189409746967, 6163853164333, 215283653614823, 8033015072981677, 318963167792376087, 13430607648848415309, 597871639955925563463, 28059143187405536116653, 1384849551267166030082199, 71712434188939188553335789
Offset: 0

Views

Author

Paul D. Hanna, Nov 26 2014

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 7*x^3 + 77*x^4 + 1111*x^5 + 19389*x^6 +...
If we define
B(x) = 2*A(x) - (1+x) = 1 + x + 2*x^2 + 14*x^3 + 154*x^4 + 2222*x^5 +...
C(x) = 3*A(x) - 2*(1+x) = 1 + x + 3*x^2 + 21*x^3 + 231*x^4 + 3333*x^5 +...
then
B(x) = C(x/B(x)) and
C(x) = B(x*C(x)).
Further, A(x), B(x), and C(x) satisfy
B(x) = 3*A(x/B(x)) - 2 - 2*x/B(x) and
C(x) = (2*A(x*C(x)) - 1)/(1+x).
		

Crossrefs

Cf. A120955.

Programs

  • PARI
    /* 3*A(x) - 2*(1+x) = Series_Reversion(x/(2*A(x) - (1+x)))/x */
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=Ser(concat(Vec(A),0));
    A = serreverse(x/(2*A - (1+x)))/x + 2*(1+x) - 2*A); polcoeff(A,n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* 2*A(x) - (1+x) = x/Series_Reversion(x*(3*A(x) - 2*(1+x))) */
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=Ser(concat(Vec(A),0));
    A = 3*A - x/serreverse(x*(3*A - 2*(1+x))) - (1+x)); polcoeff(A,n)}
    for(n=0, 25, print1(a(n), ", "))

Formula

G.f. A(x) satisfies: 2*A(x) - (1+x) = x/Series_Reversion( x*(3*A(x) - 2*(1+x)) ).
G.f. A(x) satisfies: 2*A(3*x*A(x) - 2*x*(1+x)) = 3*(1+x)*A(x) - 2*(1+x)^2 + 1.
Define B(x) = 2*A(x) - (1+x) and C(x) = 3*A(x) - 2*(1+x), then B(x) = C(x/B(x)) and C(x) = B(x*C(x)).
a(n) ~ c * n^(n + 1/2 + 2*log(3/2)) / (exp(n) * (log(3/2))^n), where c = 0.104713270868379... . - Vaclav Kotesovec, Nov 30 2014
Showing 1-2 of 2 results.