cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120985 Number of ternary trees with n edges and having no vertices of degree 2. A ternary tree is a rooted tree in which each vertex has at most three children and each child of a vertex is designated as its left or middle or right child.

Original entry on oeis.org

1, 3, 9, 28, 93, 333, 1272, 5085, 20925, 87735, 372879, 1602450, 6953824, 30438138, 134255403, 596154495, 2662813341, 11955684591, 53927330037, 244250703252, 1110401393067, 5065143385647, 23176155530394, 106344639962973
Offset: 0

Views

Author

Emeric Deutsch, Jul 21 2006

Keywords

Comments

Column 0 of A120982.

Examples

			a(1)=3 because we have (Q,L), (Q,M) and (Q,R), where Q denotes the root and L (M,R) denotes a left (middle, right) child of Q.
		

Crossrefs

Cf. A120982.

Programs

  • Maple
    a:=n->sum(3^(n-3*j)*binomial(n+1,2*j+1)*binomial(n-2*j,j),j=0..n/2)/(n+1): seq(a(n),n=0..27);
  • Mathematica
    Table[1/(n+1)*Sum[3^(n-3*j)*Binomial[n+1,2*j+1]*Binomial[n-2*j,j],{j,0,n/2}],{n,0,20}] (* Vaclav Kotesovec, Oct 19 2012 *)

Formula

a(n) = (1/(n+1)) * Sum_{j..floor(n/3)} 3^(n-3*j) * binomial(n+1,2*j+1) * binomial(n-2*j,j).
G.f.=G(z) satisfies G=1+3zG + z^3*G^3.
Recurrence: 2*n*(2*n+3)*a(n) = 6*(6*n^2-1)*a(n-1) - 54*(n-1)*(2*n-1)*a(n-2) + 135*(n-2)*(n-1)*a(n-3). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ (3+3/2^(2/3))^(n+3/2)/(2*sqrt(3*Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 19 2012
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} (-3)^k * binomial(n+1,k) * binomial(3*n-3*k+3,n-2*k). - Seiichi Manyama, Mar 23 2024