A121016 Numbers whose binary expansion is properly periodic.
3, 7, 10, 15, 31, 36, 42, 45, 54, 63, 127, 136, 153, 170, 187, 204, 221, 238, 255, 292, 365, 438, 511, 528, 561, 594, 627, 660, 682, 693, 726, 759, 792, 825, 858, 891, 924, 957, 990, 1023, 2047, 2080, 2145, 2184, 2210, 2275, 2340, 2405, 2457, 2470, 2535
Offset: 1
Examples
For example, 204=(1100 1100)_2 and 292=(100 100 100)_2 belong to the sequence, but 30=(11110)_2 cannot be split into repeating periods. From _Gus Wiseman_, Oct 31 2019: (Start) The sequence of terms together with their binary expansions and binary indices begins: 3: 11 ~ {1,2} 7: 111 ~ {1,2,3} 10: 1010 ~ {2,4} 15: 1111 ~ {1,2,3,4} 31: 11111 ~ {1,2,3,4,5} 36: 100100 ~ {3,6} 42: 101010 ~ {2,4,6} 45: 101101 ~ {1,3,4,6} 54: 110110 ~ {2,3,5,6} 63: 111111 ~ {1,2,3,4,5,6} 127: 1111111 ~ {1,2,3,4,5,6,7} 136: 10001000 ~ {4,8} 153: 10011001 ~ {1,4,5,8} 170: 10101010 ~ {2,4,6,8} 187: 10111011 ~ {1,2,4,5,6,8} 204: 11001100 ~ {3,4,7,8} 221: 11011101 ~ {1,3,4,5,7,8} 238: 11101110 ~ {2,3,4,6,7,8} 255: 11111111 ~ {1,2,3,4,5,6,7,8} 292: 100100100 ~ {3,6,9} (End)
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
PeriodicQ[n_, base_] := Block[{l = IntegerDigits[n, base]}, MemberQ[ RotateLeft[l, # ] & /@ Most@ Divisors@ Length@l, l]]; Select[ Range@2599, PeriodicQ[ #, 2] &]
-
PARI
is(n)=n=binary(n);fordiv(#n,d,for(i=1,#n/d-1, for(j=1,d, if(n[j]!=n[j+i*d], next(3)))); return(d<#n)) \\ Charles R Greathouse IV, Dec 10 2013
Comments