cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121020 Lah transform of A104600.

Original entry on oeis.org

1, 1, 7, 85, 1587, 41981, 1484643, 67306429, 3790883659, 258899180989, 21029065282803, 1999625128004813, 219691693064750283, 27580289062408474861, 3919060527556589637043, 625165018565884343909053
Offset: 0

Views

Author

Vladeta Jovovic, Sep 08 2006, Sep 19 2006

Keywords

Programs

  • Maple
    read "transforms" ; A000670 := proc(n) local k ; if n = 0 then 1; else add(k!*combinat[stirling2](n,k),k=1..n) ; fi ; end: A000110 := proc(n) local k ; add(combinat[stirling2](n,k),k=0..n) ; end: A104600 := proc(n) local k ; add(combinat[stirling1](n,k)*A000670(k)*A000110(k),k=0..n) ; end: A121020 := proc(nmax) local a104600 ; a104600 := [seq(A104600(n),n=0..nmax)] ; LAH(a104600) ; end: A121020(20) ; # R. J. Mathar, Jan 21 2008
  • Mathematica
    a[n_] := a[n] = (1/(2 E)) Sum[Sum[Product[r s + k, {k, 0, n - 1}]/(2^r s!), {r, 0, Infinity}], {s, 0, Infinity}];
    Reap[For[n = 0, n <= 80, n++, Print[n, " ", a[n]]; Sow[a[n]]]][[2, 1]] (* Jean-François Alcover, Apr 04 2020 *)

Formula

a(n) = 1/(2*exp(1))*Sum_{r,s>=0} [r*s]^n/(2^r*s!), where [m]^n = m*(m+1)*...*(m+n-1) is the rising factorial.

Extensions

More terms from R. J. Mathar, Jan 21 2008