A121041 Number of divisors of n that are also contained in the decimal representation of n.
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 1, 3, 2, 2, 1, 2, 1, 2, 2, 2, 2, 1, 2, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 3, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 2, 3, 2, 3, 2, 3, 3
Offset: 1
Examples
a(22) = #{2, 22} = 2; a(23) = #{23} = 1; a(24) = #{2, 4, 24} = 3.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
import Data.List (isInfixOf) a121041 n = length $ filter (\d -> n `mod` d == 0 && show d `isInfixOf` show n) [1..n] -- Reinhard Zumkeller, Feb 11 2011
-
Mathematica
A121041[n_] := DivisorSum[n, 1 &, StringContainsQ[IntegerString[n], IntegerString[#]] &]; Array[A121041, 150] (* Paolo Xausa, Feb 25 2024 *)
-
PARI
substr(a,b)=a=digits(a); b=digits(b); for(i=0,#a-#b, for(j=1,#b, if(a[i+j]!=b[j], next(2))); return(1)); 0 a(n)=sumdiv(n,d, substr(n,d)) \\ Charles R Greathouse IV, Mar 31 2016
-
Python
from sympy import divisors def a(n): s = str(n) return sum(1 for d in divisors(n, generator=True) if str(d) in s) print([a(n) for n in range(1, 106)]) # Michael S. Branicky, Jul 11 2022
Formula
a(n) = 1 iff A121042(n) = n.