A121046 Approximation to the (10^n)-th prime by applying a bisection to Gram's formula for Riemann's approximation of the prime counting function.
29, 536, 7923, 104768, 1299733, 15484040, 179431239, 2038076587, 22801797576, 252097715777, 2760727752353, 29996225393465, 323780512411510, 3475385760290723, 37124508056355511, 394906913798224975, 4185296581676470068, 44211790234127235470
Offset: 1
Keywords
Examples
pi(10^18) = A006988(18) = 44211790234832169331 and a(18) = 44211790234127235470. So the approximation of pi(10^18) by primex(10^18) is accurate to 11 places. Agrees for 52 digits with the solution to Li(x)=10^100 given in Mathematics Stack Exchange link. - _Hugo Pfoertner_, Nov 17 2019
Links
- Hugo Pfoertner, Table of n, a(n) for n = 1..100
- Chris Caldwell, The Prime Page.
- Cino Hilliard, David Broadhurst, Andrey Kulsha, Number of prime-index-primes < n, digest of 15 messages in primeform Yahoo group, Apr 2 - Apr 5, 2006. [Cached copy]
- Mathematics Stack Exchange, How many digits of the googol-th prime can we calculate (or were calculated)?
Programs
-
PARI
\\ List the approximations to the (10^n)-th prime by Cino Hilliard \\ Gram's Riemann's Approx of Pi(x) Rg(x) = { local(n=1, L, s=1, r); L=r=log(x); while(s<10^120*r, s=s+r/zeta(n+1)/n; n=n+1; r=r*L/n); (s) } primex(n) = { local(x, px, r1, r2, r, p10, b, e); b=10; p10=log(n)/log(10); if(Rg(b^p10*log(b^(p10+1)))< b^p10, m=p10+1, m=p10); r1 = 0; r2 = 1; for(x=1, 400, r=(r1+r2)/2; px = Rg(b^p10*log(b^(m+r))); if(px <= b^p10, r1=r, r2=r); r=(r1+r2)/2; ); floor(b^p10*log(b^(m+r))+.5); } for (k=1,20,print1(primex(10^k),", "))
Extensions
More terms from Hugo Pfoertner, Nov 17 2019
More precise name by Hugo Pfoertner, Apr 29 2021
Comments