A121085
Number of primitive Pythagorean-like triples a^2+b^2=c^2+k for k=-3 with 0
Original entry on oeis.org
3, 30, 293, 2881, 28871, 288685, 2886366, 28868362, 288673693, 2886752763
Offset: 1
a(1)=3 because there are 3 solutions (a,b,c) as (2,3,4),(5,6,8),(4,9,10) with 0<c<=10^1.
-
countTriples[m_, k_] := Module[ {c2, c2odd, total = 0, fax, g}, Do[ c2 = c^2 + k; If[c2 < 2, Continue[]]; c2odd = c2; While[EvenQ[c2odd], c2odd /= 2]; If [c2odd==1, If [OddQ[Log[2,c2]], total++ ]; Continue[]]; If[Mod[c2odd, 4] == 3, Continue[]]; g = GCD[c2odd, 100947]; If[g != 1 && g^2 != GCD[c2odd, 10190296809], Continue[]]; fax = Map[{Mod[ #[[1]],4],#[[2]]}&, FactorInteger[c2odd]]; If[Apply[Or, Map[ #[[1]] == 3 && OddQ[ #[[2]]] &, fax]], Continue []]; fax = Cases[fax, {1,aa_}:>aa+1]; fax = Ceiling[Apply[Times,fax]/2]; total += fax;, {c,m}]; total] (* Courtesy of Daniel Lichtblau of Wolfram Research *)
First few terms found by
Tito Piezas III, James Waldby (j-waldby(AT)pat7.com). Subsequent terms found by Andrzej Kozlowski (akoz(AT)mimuw.edu.pl), Daniel Lichtblau (danl(AT)wolfram.com).
A121086
Number of primitive Pythagorean-like triples a^2+b^2=c^2+k for k=3 with 0
Original entry on oeis.org
1, 13, 119, 1219, 12115, 121054, 1210480, 12101765, 121011208, 1210128842
Offset: 1
a(1)=1 because there is one solution (a,b,c) as (4,6,7) with 0<c<=10^1.
-
(* Courtesy of Daniel Lichtblau of Wolfram Research *)
countTriples[m_, k_] := Module[ {c2, c2odd, total = 0, fax, g}, Do[ c2 = c^2 + k; If[c2 < 2, Continue[]]; c2odd = c2; While[EvenQ[c2odd], c2odd /= 2]; If [c2odd==1, If [OddQ[Log[2,c2]], total++ ]; Continue[]]; If[Mod[c2odd, 4] == 3, Continue[]]; g = GCD[c2odd, 100947]; If[g != 1 && g^2 != GCD[c2odd, 10190296809], Continue[]]; fax = Map[{Mod[ #[[1]],4],#[[2]]}&, FactorInteger[c2odd]]; If[Apply[Or, Map[ #[[1]] == 3 && OddQ[ #[[2]]] &, fax]], Continue []]; fax = Cases[fax, {1,aa_}:>aa+1]; fax = Ceiling[Apply[Times,fax]/2]; total += fax;, {c,m}]; total]
First few terms found by
Tito Piezas III, James Waldby (j-waldby(AT)pat7.com)
Subsequent terms found by Andrzej Kozlowski (akoz(AT)mimuw.edu.pl), Daniel Lichtblau (danl(AT)wolfram.com)
A121088
Number of primitive Pythagorean-like triples a^2+b^2=c^2+k for k=5 with 0
Original entry on oeis.org
1, 20, 202, 2046, 20589, 205489, 2055224, 20551650, 205500435, 2055052214
Offset: 1
a(1)=1 because there is one solution (a,b,c) as (4,5,6) with 0<c<=10^1.
-
(* Courtesy of Daniel Lichtblau of Wolfram Research *)
countTriples[m_, k_] := Module[ {c2, c2odd, total = 0, fax, g}, Do[ c2 = c^2 + k; If[c2 < 2, Continue[]]; c2odd = c2; While[EvenQ[c2odd], c2odd /= 2]; If [c2odd==1, If [OddQ[Log[2,c2]], total++ ]; Continue[]]; If[Mod[c2odd, 4] == 3, Continue[]]; g = GCD[c2odd, 100947]; If[g != 1 && g^2 != GCD[c2odd, 10190296809], Continue[]]; fax = Map[{Mod[ #[[1]],4],#[[2]]}&, FactorInteger[c2odd]]; If[Apply[Or, Map[ #[[1]] == 3 && OddQ[ #[[2]]] &, fax]], Continue []]; fax = Cases[fax, {1,aa_}:>aa+1]; fax = Ceiling[Apply[Times,fax]/2]; total += fax;, {c,m}]; total]
First few terms found by
Tito Piezas III, James Waldby (j-waldby(AT)pat7.com)
Subsequent terms found by Andrzej Kozlowski (akoz(AT)mimuw.edu.pl), Daniel Lichtblau (danl(AT)wolfram.com)
Showing 1-3 of 3 results.
Comments