A121102 Catapolyoctagons (see Cyvin et al. for precise definition).
0, 0, 0, 4, 24, 144, 744, 3844, 19344, 97344, 487344, 2439844, 12202344, 61027344, 305152344, 1525839844, 7629277344, 38146777344, 190734277344, 953673339844, 4768368652344, 23841853027344, 119209274902344, 596046423339844, 2980232165527344, 14901161071777344, 74505805603027344
Offset: 1
References
- S. J. Cyvin, B. N. Cyvin, and J. Brunvoll. Enumeration of tree-like octagonal systems: catapolyoctagons, ACH Models in Chem. 134 (1997), 55-70, Table 1 Symmetry C_s.
Links
- Index entries for linear recurrences with constant coefficients, signature (6,0,-30,25).
Crossrefs
Cf. A056487.
Programs
-
Maple
A121102 := proc(n) local mr,ar,cr,dr ,ir,p5; if n = 1 then ar := 1 ; else ar := 0 ; end if; dr := 1-ar ; p5 := 5^(floor(n/2)-1) ; if n = 1 then cr :=0 ; else cr := (p5-1)/2+2*ar/5 ; end if; mr := (3-2*(-1)^n)*p5/2-1/2 ; if n = 1 then ir := 1; else ir := (5^(n-2)+1)/4 +(2-(-1)^n)*p5/2 -3*ar/5 ; end if; ir-ar-dr-cr-mr ; end proc: seq(A121102(n),n=1..30) ; # R. J. Mathar, Jul 31 2019
-
Mathematica
LinearRecurrence[{6, 0, -30, 25}, {0, 0, 0, 4}, 27] (* Jean-François Alcover, Mar 31 2020 *)
Formula
From R. J. Mathar, Jul 31 2019: (Start)
G.f.: -4*x^4/((x - 1)*(5*x - 1)*(5*x^2 - 1)).
4*a(n) = 5^(n-2) + 1 - 10*A056487(n-4). (End)
E.g.f.: (25*cosh(x) + cosh(5*x) - 10*cosh(sqrt(5)*x) + 25*sinh(x) + sinh(5*x) - 6*sqrt(5)*sinh(sqrt(5)*x) - 16)/100. - Stefano Spezia, Jun 06 2023