cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121102 Catapolyoctagons (see Cyvin et al. for precise definition).

Original entry on oeis.org

0, 0, 0, 4, 24, 144, 744, 3844, 19344, 97344, 487344, 2439844, 12202344, 61027344, 305152344, 1525839844, 7629277344, 38146777344, 190734277344, 953673339844, 4768368652344, 23841853027344, 119209274902344, 596046423339844, 2980232165527344, 14901161071777344, 74505805603027344
Offset: 1

Views

Author

N. J. A. Sloane, Aug 11 2006

Keywords

References

  • S. J. Cyvin, B. N. Cyvin, and J. Brunvoll. Enumeration of tree-like octagonal systems: catapolyoctagons, ACH Models in Chem. 134 (1997), 55-70, Table 1 Symmetry C_s.

Crossrefs

Cf. A056487.

Programs

  • Maple
    A121102 := proc(n)
        local mr,ar,cr,dr ,ir,p5;
        if n = 1 then
            ar := 1 ;
        else
            ar := 0 ;
        end if;
        dr := 1-ar ;
        p5 := 5^(floor(n/2)-1) ;
        if n = 1 then
            cr :=0 ;
        else
            cr := (p5-1)/2+2*ar/5 ;
        end if;
        mr := (3-2*(-1)^n)*p5/2-1/2 ;
        if n = 1 then
            ir := 1;
        else
            ir := (5^(n-2)+1)/4  +(2-(-1)^n)*p5/2 -3*ar/5 ;
        end if;
        ir-ar-dr-cr-mr ;
    end proc:
    seq(A121102(n),n=1..30) ; # R. J. Mathar, Jul 31 2019
  • Mathematica
    LinearRecurrence[{6, 0, -30, 25}, {0, 0, 0, 4}, 27] (* Jean-François Alcover, Mar 31 2020 *)

Formula

From R. J. Mathar, Jul 31 2019: (Start)
G.f.: -4*x^4/((x - 1)*(5*x - 1)*(5*x^2 - 1)).
4*a(n) = 5^(n-2) + 1 - 10*A056487(n-4). (End)
E.g.f.: (25*cosh(x) + cosh(5*x) - 10*cosh(sqrt(5)*x) + 25*sinh(x) + sinh(5*x) - 6*sqrt(5)*sinh(sqrt(5)*x) - 16)/100. - Stefano Spezia, Jun 06 2023