A121127 Unbranched a-4-catapolynonagons (see Brunvoll reference for precise definition).
1, 7, 73, 747, 7218, 65583, 567540, 4725540, 38145600, 300244320, 2314123992, 17522693064, 130682767824, 961866429552, 6998356983168, 50401223526528, 359691525797760, 2546051729270400, 17889363288835200, 124855271993773440, 866077921088785152, 5974010552957001984, 40994676513378284544
Offset: 4
Links
- J. Brunvoll, S. J. Cyvin, and B. N. Cyvin, Isomer enumeration of polygonal systems representing polycyclic conjugated hydrocarbons: unbranched catacondensed systems with tetragons and q-gons, J. Molec. Struct. (Theochem), 364 (1996), 1-13; see Table 12 with q = 9 and alpha = 4.
- Index entries for linear recurrences with constant coefficients, signature (30,-342,1620,-108,-27864,77976,86832,-622080,373248,1399680,-1679616).
Programs
-
Maple
# Using the "master formula" in Exhibit 4 (p. 13) with q = 9 and alpha = 4: a := proc(r) 1/4*6^(r - 6)*(36*binomial(r - 2, 2) + 12*binomial(r - 2, 3) + binomial(r - 2, 4)) + 1/4*binomial(2, r - 4) + (1 - 1/2*(-1)^r)*(6*floor(1/2*r) - 6 + binomial(floor(1/2*r) - 1, 2))*6^(floor(1/2*r) - 3); end; seq(a(r), r = 4 .. 30); # Petros Hadjicostas, Jul 31 2019
Formula
G.f. x^4 +7*x^5 +73*x^6 -9*x^7*(-83 +1688*x -11613*x^2 +15726*x^3 +164862*x^4 -647508*x^5 -283716*x^6 +4642272*x^7 -3888000*x^8 -10101024*x^9 +13576896*x^10) / ( (6*x^2-1)^3*(6*x-1)^5 ). - R. J. Mathar, Aug 01 2019
Extensions
More terms from Petros Hadjicostas, Jul 31 2019
Comments