cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121127 Unbranched a-4-catapolynonagons (see Brunvoll reference for precise definition).

Original entry on oeis.org

1, 7, 73, 747, 7218, 65583, 567540, 4725540, 38145600, 300244320, 2314123992, 17522693064, 130682767824, 961866429552, 6998356983168, 50401223526528, 359691525797760, 2546051729270400, 17889363288835200, 124855271993773440, 866077921088785152, 5974010552957001984, 40994676513378284544
Offset: 4

Views

Author

N. J. A. Sloane, Aug 13 2006

Keywords

Comments

For r >= 4, a(r) is the total number of isomers of unbranched alpha-4-catapolynonagons with q = 9 and alpha = 4. Here alpha = 4 is the number of tetragons and r - alpha = r - 4 is the number of q-gons (9-gons) in the alpha-4-catafusene. - Petros Hadjicostas, Jul 31 2019

Programs

  • Maple
    # Using the "master formula" in Exhibit 4 (p. 13) with q = 9 and alpha = 4:
    a := proc(r) 1/4*6^(r - 6)*(36*binomial(r - 2, 2) + 12*binomial(r - 2, 3) + binomial(r - 2, 4)) + 1/4*binomial(2, r - 4) + (1 - 1/2*(-1)^r)*(6*floor(1/2*r) - 6 + binomial(floor(1/2*r) - 1, 2))*6^(floor(1/2*r) - 3); end;
    seq(a(r), r = 4 .. 30); # Petros Hadjicostas, Jul 31 2019

Formula

G.f. x^4 +7*x^5 +73*x^6 -9*x^7*(-83 +1688*x -11613*x^2 +15726*x^3 +164862*x^4 -647508*x^5 -283716*x^6 +4642272*x^7 -3888000*x^8 -10101024*x^9 +13576896*x^10) / ( (6*x^2-1)^3*(6*x-1)^5 ). - R. J. Mathar, Aug 01 2019

Extensions

More terms from Petros Hadjicostas, Jul 31 2019