A121133 Numbers of isomers of unbranched a-4-catapolypentagons - see Brunvoll reference for precise definition.
1, 1, 2, 3, 8, 16, 38, 80, 180, 384, 840, 1792, 3856, 8192, 17440, 36864, 77888, 163840, 344192, 720896, 1507584, 3145728, 6554112, 13631488, 28312576, 58720256, 121636864, 251658240, 520097792, 1073741824, 2214600704, 4563402752, 9395257344, 19327352832
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- J. Brunvoll, S. J. Cyvin and B. N. Cyvin, Isomer enumeration of polygonal systems..., J. Molec. Struct. (Theochem), 364 (1996), 1-13, Table 10.
- S. J. Cyvin et al., Theory of polypentagons, J. Chem. Inf. Comput. Sci., 33 (1993), 466-474.
- Index entries for linear recurrences with constant coefficients, signature (4,-2,-8,8).
Programs
-
Maple
H := proc(r,alpha,q) local rhalf,alphahalf ; rhalf := floor(r/2) ; alphahalf := floor(alpha/2) ; (binomial(rhalf-1,alphahalf-1)*(q-3)+binomial(rhalf-1,alphahalf))*(q-3)^(rhalf-alphahalf-1) ; end: J := proc(r,alpha,q) (binomial(r-2,alpha-2)*(q-3)^2+2*binomial(r-2,alpha-1)*(q-3)+binomial(r-2,alpha))*(q-3)^(r-alpha-2) ; end: Ifunc := proc(r,alpha,q) J(r,alpha,q)/4+binomial(2,r-alpha)/4+ (1+(-1)^(r+alpha)+(1+(-1)^alpha)*(1-(-1)^r)/2)*H(r,alpha,q)/4 ; end: A121133 := proc(n) if n = 1 then 1; else Ifunc(n,1,5) ; fi ; end: for n from 1 to 80 do printf("%d,",A121133(n)) ; od: # R. J. Mathar, Aug 07 2008
-
Mathematica
Rest@ CoefficientList[Series[x (2 x^6 + 2 x^5 - 5 x^3 + 3 x - 1)/((2 x - 1)^2*(2 x^2 - 1)), {x, 0, 34}], x] (* Michael De Vlieger, Oct 28 2016 *) LinearRecurrence[{4,-2,-8,8},{1,1,2,3,8,16,38},40] (* Harvey P. Dale, Feb 10 2019 *)
-
PARI
Vec(x*(2*x^6+2*x^5-5*x^3+3*x-1)/((2*x-1)^2*(2*x^2-1)) + O(x^50)) \\ Colin Barker, Oct 28 2016
Formula
G.f.: x*(2*x^6+2*x^5-5*x^3+3*x-1)/((2*x-1)^2*(2*x^2-1)). - Colin Barker, Nov 30 2012
From Colin Barker, Oct 28 2016: (Start)
a(n) = 2^(n-5)*(n+2) for n>3 and even.
a(n) = 2^(n-5)*(n+2)+2^((n-5)/2) for n>3 and odd.
a(n) = 4*a(n-1)-2*a(n-2)-8*a(n-3)+8*a(n-4) for n>7.
(End)
Extensions
Edited and extended by R. J. Mathar, Aug 07 2008
Comments