cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121133 Numbers of isomers of unbranched a-4-catapolypentagons - see Brunvoll reference for precise definition.

Original entry on oeis.org

1, 1, 2, 3, 8, 16, 38, 80, 180, 384, 840, 1792, 3856, 8192, 17440, 36864, 77888, 163840, 344192, 720896, 1507584, 3145728, 6554112, 13631488, 28312576, 58720256, 121636864, 251658240, 520097792, 1073741824, 2214600704, 4563402752, 9395257344, 19327352832
Offset: 1

Views

Author

N. J. A. Sloane, Aug 13 2006, Sep 24 2006

Keywords

Comments

Numbers of polypentagons with two connected internal vertices.

Programs

  • Maple
    H := proc(r,alpha,q) local rhalf,alphahalf ; rhalf := floor(r/2) ; alphahalf := floor(alpha/2) ; (binomial(rhalf-1,alphahalf-1)*(q-3)+binomial(rhalf-1,alphahalf))*(q-3)^(rhalf-alphahalf-1) ; end:
    J := proc(r,alpha,q) (binomial(r-2,alpha-2)*(q-3)^2+2*binomial(r-2,alpha-1)*(q-3)+binomial(r-2,alpha))*(q-3)^(r-alpha-2) ; end: Ifunc := proc(r,alpha,q) J(r,alpha,q)/4+binomial(2,r-alpha)/4+ (1+(-1)^(r+alpha)+(1+(-1)^alpha)*(1-(-1)^r)/2)*H(r,alpha,q)/4 ; end:
    A121133 := proc(n) if n = 1 then 1; else Ifunc(n,1,5) ; fi ; end: for n from 1 to 80 do printf("%d,",A121133(n)) ; od: # R. J. Mathar, Aug 07 2008
  • Mathematica
    Rest@ CoefficientList[Series[x (2 x^6 + 2 x^5 - 5 x^3 + 3 x - 1)/((2 x - 1)^2*(2 x^2 - 1)), {x, 0, 34}], x] (* Michael De Vlieger, Oct 28 2016 *)
    LinearRecurrence[{4,-2,-8,8},{1,1,2,3,8,16,38},40] (* Harvey P. Dale, Feb 10 2019 *)
  • PARI
    Vec(x*(2*x^6+2*x^5-5*x^3+3*x-1)/((2*x-1)^2*(2*x^2-1)) + O(x^50)) \\ Colin Barker, Oct 28 2016

Formula

G.f.: x*(2*x^6+2*x^5-5*x^3+3*x-1)/((2*x-1)^2*(2*x^2-1)). - Colin Barker, Nov 30 2012
From Colin Barker, Oct 28 2016: (Start)
a(n) = 2^(n-5)*(n+2) for n>3 and even.
a(n) = 2^(n-5)*(n+2)+2^((n-5)/2) for n>3 and odd.
a(n) = 4*a(n-1)-2*a(n-2)-8*a(n-3)+8*a(n-4) for n>7.
(End)

Extensions

Edited and extended by R. J. Mathar, Aug 07 2008