A121334 Triangle, read by rows, where T(n,k) = C( n*(n+1)/2 + n-k, n-k), for n>=k>=0.
1, 2, 1, 10, 4, 1, 84, 28, 7, 1, 1001, 286, 66, 11, 1, 15504, 3876, 816, 136, 16, 1, 296010, 65780, 12650, 2024, 253, 22, 1, 6724520, 1344904, 237336, 35960, 4495, 435, 29, 1, 177232627, 32224114, 5245786, 749398, 91390, 9139, 703, 37, 1, 5317936260
Offset: 0
Examples
Triangle begins: 1; 2, 1; 10, 4, 1; 84, 28, 7, 1; 1001, 286, 66, 11, 1; 15504, 3876, 816, 136, 16, 1; 296010, 65780, 12650, 2024, 253, 22, 1; 6724520, 1344904, 237336, 35960, 4495, 435, 29, 1; 177232627, 32224114, 5245786, 749398, 91390, 9139, 703, 37, 1; ...
Crossrefs
Programs
-
PARI
T(n,k)=binomial(n*(n+1)/2+n-k,n-k)
Formula
Remarkably, row n of the matrix inverse (A121439) equals row n of A121412^(-n*(n+1)/2-1). Further, the following matrix products of triangles of binomial coefficients are equal: A121412 = A121334*A122178^-1 = A121335*A121334^-1 = A121336*A121335^-1, where row n of H=A121412 equals row (n-1) of H^(n+1) with an appended '1'.
Comments