A349637 a(1) = 2 and a(n) is the smallest nonsquare positive integer not occurring earlier such that the intersection of the periodic parts of continued fractions for square roots of a(n) and a(n-1) is the empty set.
2, 5, 3, 10, 6, 11, 7, 12, 8, 17, 13, 18, 14, 26, 15, 20, 27, 19, 37, 21, 38, 22, 40, 24, 28, 39, 23, 30, 43, 50, 29, 51, 31, 41, 32, 42, 34, 55, 35, 56, 47, 65, 33, 66, 44, 68, 45, 82, 46, 83, 48, 72, 53, 84, 52, 87, 54, 101, 57, 89, 58, 90, 62, 102, 59, 104
Offset: 1
Keywords
Examples
n a(n) Periodic part of continued fraction for square root of a(n) -- ---- ----------------------------------------------------------- 1 2 {2} 2 5 {4} 3 3 {1, 2} 4 10 {6} 5 6 {2, 4} 6 11 {3, 6} 7 7 {1, 1, 1, 4} 8 12 {2, 6} 9 8 {1, 4} 10 17 {8} 11 13 {1, 1, 1, 1, 6}
Programs
-
Mathematica
pcf=Last@*ContinuedFraction@*Sqrt; a[1]=2; a[n_]:=a[n]=(k=2; While[MemberQ[Array[a,n-1],k]||IntegerQ@Sqrt@k||Intersection[pcf@a[n-1],pcf@k]!={},k++];k); Array[a,100]
Comments