cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121364 Convolution of A066983 with the double Fibonacci sequence A103609.

Original entry on oeis.org

0, 0, 1, 2, 3, 6, 10, 18, 29, 50, 81, 136, 220, 364, 589, 966, 1563, 2550, 4126, 6710, 10857, 17622, 28513, 46224, 74792, 121160, 196041, 317434, 513619, 831430, 1345282, 2177322, 3522981, 5701290, 9224881, 14927768, 24153636, 39083988, 63239221, 102327390
Offset: 1

Views

Author

Graeme McRae, Jul 23 2006

Keywords

Comments

The convolution of 1,0,1,1,1,3,3,7,9,17,25,... (A066983 with 1,0 added to the front) with "A double Fibonacci sequence" (A103609) is the Fibonacci sequence (A000045), with an extra initial 0.

Examples

			a(7)=10 because F(7)=13 and D(8)=3 and a(7)=F(7)-D(8).
		

Crossrefs

Programs

  • Magma
    A121364:= func< n | Fibonacci(n) - Fibonacci(Floor((n+1)/2)) >;
    [A121364(n): n in [1..70]]; // G. C. Greubel, Oct 23 2024
    
  • Mathematica
    LinearRecurrence[{1,2,-1,0,-1,-1},{0, 0, 1, 2, 3, 6},40] (* James C. McMahon, Oct 17 2024 *)
  • PARI
    concat([0,0], Vec(-x^3*(x^2-x-1)/((x^2+x-1)*(x^4+x^2-1)) + O(x^100))) \\ Colin Barker, Oct 13 2014
    
  • SageMath
    def A121364(n): return fibonacci(n) - fibonacci((n+1)//2)
    [A121364(n) for n in range(1,71)] # G. C. Greubel, Oct 23 2024

Formula

a(n) = F(n) - D(n+1), where F is the Fibonacci sequence (A000045) and D is "A double Fibonacci sequence" (A103609).
G.f.: x^3*(1+x-x^2) / ((1-x-x^2)*(1-x^2-x^4)). - Colin Barker, Oct 13 2014

Extensions

More terms from Colin Barker, Oct 13 2014