A121372 Triangle, read by rows of length A003056(n) for n >= 1, defined by the recurrence: T(n,k) = T(n-k,k-1) - T(n-k,k) for n > k > 1, with T(n,1) =(-1)^(n-1) for n >= 1.
1, -1, 1, 1, -1, -1, 1, 0, -1, 0, 1, 1, 1, -1, -1, -1, 0, 1, 0, -1, -1, 0, 2, 1, 1, 1, -1, -1, -1, -1, 1, 0, 1, 0, -2, -1, -1, 0, 2, 1, 1, 1, -2, 0, 1, -1, -1, 2, 1, -1, 1, 0, -2, -1, 0, -1, 0, 3, 1, -1, 1, 1, -3, -2, 1, -1, -1, 2, 1, -1, 1, 0, -3, -1, 2, 1, -1, 0, 4, 2, -1, -1, 1, 1, -3, -1, 2, 0, -1, -1, 3, 1, -3, -1, 1, 0, -4, -2, 2, 1, -1, 0, 4, 2, -3
Offset: 1
Examples
Triangle begins: 1; -1; 1, 1; -1, -1; 1, 0; -1, 0, 1; 1, 1, -1; -1, -1, 0; 1, 0, -1; -1, 0, 2, 1; 1, 1, -1, -1; -1, -1, 1, 0; 1, 0, -2, -1; -1, 0, 2, 1; 1, 1, -2, 0, 1; -1, -1, 2, 1, -1; 1, 0, -2, -1, 0; -1, 0, 3, 1, -1; 1, 1, -3, -2, 1; -1, -1, 2, 1, -1; 1, 0, -3, -1, 2, 1; -1, 0, 4, 2, -1, -1; 1, 1, -3, -1, 2, 0; -1, -1, 3, 1, -3, -1; 1, 0, -4, -2, 2, 1; -1, 0, 4, 2, -3, -1; 1, 1, -4, -2, 3, 1; -1, -1, 4, 2, -3, 0, 1; 1, 0, -4, -2, 4, 2, -1; -1, 0, 5, 2, -4, -2, 0; 1, 1, -5, -2, 5, 1, -1; -1, -1, 4, 2, -5, -2, 1; 1, 0, -5, -2, 5, 2, -1; -1, 0, 6, 3, -6, -3, 1; 1, 1, -5, -3, 6, 2, -1; -1, -1, 5, 2, -7, -2, 3, 1; ...
Links
- Paul D. Hanna, Table of n, a(n) for n = 1..10075
Programs
-
PARI
{T(n, k)=if(n
-
PARI
/* Using generating formula for columns */ {tr(n) = floor((sqrt(1+8*n)-1)/2)} \\ number of terms in row n {T(n,k) = polcoeff( x^(k*(k+1)/2) / prod(j=1,k, 1 + x^j +x*O(x^n)), n)} {for(n=1,50, for(k=1, tr(n), print1(T(n,k),", "));print(""))} \\ Paul D. Hanna, Jan 28 2024
Formula
G.f. of column k: x^(k*(k+1)/2) / ((1+x)(1+x^2)(1+x^3)...(1+x^k)) for k >= 1.
Comments