cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121399 G.f. satisfies: A(x) = G(x)*A(x^2*G(x)) where G(x) is the g.f. of the Motzkin numbers (A001006): G = (1 + x*G + x^2*G^2).

Original entry on oeis.org

1, 1, 3, 6, 17, 42, 114, 302, 827, 2263, 6275, 17468, 48967, 137834, 389738, 1105861, 3148240, 8987989, 25726635, 73808069, 212196040, 611219900, 1763659860, 5097131364, 14752847173, 42757853357, 124080269331, 360493591232
Offset: 0

Views

Author

Paul D. Hanna, Jul 27 2006

Keywords

Comments

Equals column 0 of triangle A121400.

Examples

			A(x) = 1 + x + 3*x^2 + 6*x^3 + 17*x^4 + 42*x^5 + 114*x^6 +...
The g.f. of the Motzkin numbers begins:
G(x) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 21*x^5 + 51*x^6 + 127*x^7 +...
		

Crossrefs

Cf. A121400 (triangle), A121398 (main diagonal), A001006 (Motzkin).

Programs

  • PARI
    {a(n)=local(F=1+x+x^2,G=serreverse(x/(F+x^2*O(x^n)))/x,H=1+x,A); for(i=0,n,H=G*subst(H,x,x^2*G)+x^2*O(x^n)); A=(x*H-y*subst(H,x,x*y))/(x*subst(F,x,y)-y); polcoeff(polcoeff(A,n,x),0,y)}