A121400
Triangle, read by rows, where T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-1,k+1) for n>=k>=1, with T(0,0) = 1, T(n,n) = T(n,0) + T(n-1,n-1) for n>=1; T(n,k)=0 when n
1, 1, 2, 3, 3, 5, 6, 11, 8, 11, 17, 25, 30, 19, 28, 42, 72, 74, 77, 47, 70, 114, 188, 223, 198, 194, 117, 184, 302, 525, 609, 615, 509, 495, 301, 486, 827, 1436, 1749, 1733, 1619, 1305, 1282, 787, 1313, 2263, 4012, 4918, 5101, 4657, 4206, 3374, 3382, 2100, 3576
Offset: 0
Examples
Triangle begins: 1; 1, 2; 3, 3, 5; 6, 11, 8, 11; 17, 25, 30, 19, 28; 42, 72, 74, 77, 47, 70; 114, 188, 223, 198, 194, 117, 184; 302, 525, 609, 615, 509, 495, 301, 486; 827, 1436, 1749, 1733, 1619, 1305, 1282, 787, 1313; 2263, 4012, 4918, 5101, 4657, 4206, 3374, 3382, 2100, 3576; 6275, 11193, 14031, 14676, 13964, 12237, 10962, 8856, 9058, 5676, 9851; The convolution of each row with [1,1,1] yields: [1,1,1]*[1] = [1,1,1]; [1,1,1]*[1,2] = [1,3,3,2]; [1,1,1]*[3,3,5] = [3,6,11,8,5]; [1,1,1]*[6,11,8,11] = [6,17,25,30,19,11]; ... Concatenate these convoluted rows after adding last and first terms: 1,1,1 + 1,3,3,2 + 3,6,11,8,5 + 6,17,25,30,19,11 + 17, ... to obtain the concatenated rows of this original triangle: 1, 1,2, 3,3,5, 6,11,8,11, 17,25,30,19,28, ...
Programs
-
PARI
{T(n,k)=if(n
Comments