A121428 Rectangular table, read by antidiagonals, where row n is equal to column 2 of matrix power A121412^(n+1) for n>=0.
1, 1, 1, 1, 2, 5, 1, 3, 11, 45, 1, 4, 18, 101, 581, 1, 5, 26, 169, 1305, 9730, 1, 6, 35, 250, 2190, 21745, 199692, 1, 7, 45, 345, 3255, 36360, 443329, 4843125, 1, 8, 56, 455, 4520, 53916, 737051, 10679494, 135345925, 1, 9, 68, 581, 6006, 74781, 1087583, 17645187
Offset: 0
Examples
Table of column 2 in matrix powers of triangle H=A121412 begins: H^1: 1, 1, 5, 45, 581, 9730, 199692, 4843125, 135345925, ... H^2: 1, 2, 11, 101, 1305, 21745, 443329, 10679494, 296547736, ... H^3: 1, 3, 18, 169, 2190, 36360, 737051, 17645187, 487025244, ... H^4: 1, 4, 26, 250, 3255, 53916, 1087583, 25889969, 710546530, ... H^5: 1, 5, 35, 345, 4520, 74781, 1502270, 35578270, 971255050, ... H^6: 1, 6, 45, 455, 6006, 99351, 1989113, 46890210, 1273698270, ... H^7: 1, 7, 56, 581, 7735, 128051, 2556806, 60022670, 1622857887, ... H^8: 1, 8, 68, 724, 9730, 161336, 3214774, 75190410, 2024181693, ... H^9: 1, 9, 81, 885, 12015, 199692, 3973212, 92627235, 2483617140, ... Rearrangement of the upper part of the table forms A121432, which is the number of subpartitions of partition [0,0,0,1,1,1,1,2,2,2,2,2,..]: 1,1,1, 1,2,3,4, 5,11,18,26,35, 45,101,169,250,345,455, 581,1305,...
Crossrefs
Programs
-
PARI
{T(n,k)=local(H=Mat(1), B); for(m=1, k+3, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i, j]=1, B[i, j]=(H^i)[i-1, j]); )); H=B); return((H^(n+1))[k+3, 3])}
Comments