A121430 Number of subpartitions of partition P=[0,1,1,2,2,2,3,3,3,3,4,...] (A003056).
1, 1, 2, 3, 7, 12, 18, 43, 76, 118, 170, 403, 711, 1107, 1605, 2220, 5188, 9054, 13986, 20171, 27816, 37149, 85569, 147471, 225363, 322075, 440785, 585046, 758814, 1725291, 2938176, 4441557, 6285390, 8526057, 11226958, 14459138, 18301950
Offset: 0
Keywords
Examples
The g.f. is illustrated by: 1 = (1)*(1-x)^1 + (x + 2*x^2)*(1-x)^2 + (3*x^3 + 7*x^5 + 12*x^6)*(1-x)^3 + (18*x^6 + 43*x^7 + 76*x^8 + 118*x^9)*(1-x)^4 + (170*x^10 + 403*x^11 + 711*x^12 + 1107*x^13 + 1605*x^14)*(1-x)^5 + ... When the sequence is put in the form of a triangle: 1; 1, 2; 3, 7, 12; 18, 43, 76, 118; 170, 403, 711, 1107, 1605; 2220, 5188, 9054, 13986, 20171, 27816; 37149, 85569, 147471, 225363, 322075, 440785, 585046; ... then the columns of this triangle form column 0 (with offset) of successive matrix powers of triangle H=A121412. This sequence is embedded in table A121424 as follows. Column 0 of successive powers of matrix H begin: H^1: [1,1,3,18,170,2220,37149,758814,18301950,...]; H^2: 1, [2,7,43,403,5188,85569,1725291,41145705,...]; H^3: 1,3, [12,76,711,9054,147471,2938176,69328365,...]; H^4: 1,4,18, [118,1107,13986,225363,4441557,103755660,...]; H^5: 1,5,25,170, [1605,20171,322075,6285390,145453290,...]; H^6: 1,6,33,233,2220, [27816,440785,8526057,195579123,...]; H^7: 1,7,42,308,2968,37149, [585046,11226958,255436293,...]; H^8: 1,8,52,396,3866,48420,758814, [14459138,326487241,...]; H^9: 1,9,63,498,4932,61902,966477,18301950, [410368743,...]; the terms enclosed in brackets form this sequence.
Crossrefs
Programs
-
PARI
{a(n)=local(A); if(n==0,1,A=x+x*O(x^n); for(k=0, n, A+=polcoeff(A, k)*x^k*(1-(1-x)^( (sqrtint(8*k+1)+1)\2 ) )); polcoeff(A, n))}
Formula
G.f.: 1 = Sum_{n>=1} (1-x)^n * Sum_{k=n*(n-1)/2..n*(n+1)/2-1} a(k)*x^k.
Comments