A121432 Number of subpartitions of partition P=[0,0,0,1,1,1,1,2,2,2,2,2,3,...], where P(n) = [(sqrt(8*n+25) - 5)/2].
1, 1, 1, 1, 2, 3, 4, 5, 11, 18, 26, 35, 45, 101, 169, 250, 345, 455, 581, 1305, 2190, 3255, 4520, 6006, 7735, 9730, 21745, 36360, 53916, 74781, 99351, 128051, 161336, 199692, 443329, 737051, 1087583, 1502270, 1989113, 2556806, 3214774, 3973212, 4843125
Offset: 0
Keywords
Examples
The g.f. may be illustrated by: 1/(1-x) = (1 + x + x^2)*(1-x)^0 + (x^3 + 2*x^4 + 3*x^5 + 4*x^6)*(1-x)^1 + (5*x^7 + 11*x^8 + 18*x^9 + 26*x^10 + 35*x^11)*(1-x)^2 + (45*x^12 + 101*x^13 + 169*x^14 + 250*x^15 + 345*x^16 + 455*x^17)*(1-x)^3 + (581*x^18 + 1305*x^19 + 2190*x^20 + 3255*x^21 + 4520*x^22 + 6006*x^23 + 7735*x^24)*(1-x)^4 +... When the sequence is put in the form of a triangle: 1, 1, 1, 1, 2, 3, 4, 5, 11, 18, 26, 35, 45, 101, 169, 250, 345, 455, 581, 1305, 2190, 3255, 4520, 6006, 7735, 9730, 21745, 36360, 53916, 74781, 99351, 128051, 161336, ... then the columns of this triangle form column 2 (with offset) of successive matrix powers of triangle H=A121412. This sequence is embedded in table A121428 as follows. Column 2 of successive powers of matrix H begin: H^1: [1,1,5,45,581,9730,199692,4843125,135345925,...]; H^2: [1,2,11,101,1305,21745,443329,10679494,296547736,...]; H^3: [1,3,18,169,2190,36360,737051,17645187,487025244,...]; H^4: 1, [4,26,250,3255,53916,1087583,25889969,710546530,...]; H^5: 1,5, [35,345,4520,74781,1502270,35578270,971255050,...]; H^6: 1,6,45, [455,6006,99351,1989113,46890210,1273698270,...]; H^7: 1,7,56,581, [7735,128051,2556806,60022670,1622857887,...]; H^8: 1,8,68,724,9730, [161336,3214774,75190410,2024181693,...]; H^9: 1,9,81,885,12015,199692, [3973212,92627235,2483617140,...]; the terms enclosed in brackets form this sequence.
Crossrefs
Programs
-
PARI
{a(n)=local(A); if(n==0,1,A=x+x*O(x^n); for(k=0, n, A+=polcoeff(A, k)*x^k*(1-(1-x)^( (sqrtint(8*k+25)+1)\2 - 2 ) )); polcoeff(A, n))}
Formula
G.f.: 1/(1-x) = Sum_{n>=0} a(n)*x^n*(1-x)^P(n), where P(n)=[(sqrt(8*n+25)-5)/2].
Comments