cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A122177 Triangle, read by rows, where T(n,k) = C( k*(k+1)/2 + n-k + 2, n-k) for n>=k>=0.

Original entry on oeis.org

1, 3, 1, 6, 4, 1, 10, 10, 6, 1, 15, 20, 21, 9, 1, 21, 35, 56, 45, 13, 1, 28, 56, 126, 165, 91, 18, 1, 36, 84, 252, 495, 455, 171, 24, 1, 45, 120, 462, 1287, 1820, 1140, 300, 31, 1, 55, 165, 792, 3003, 6188, 5985, 2600, 496, 39, 1, 66, 220, 1287, 6435, 18564, 26334
Offset: 0

Views

Author

Paul D. Hanna, Aug 25 2006

Keywords

Comments

Remarkably, column k of the matrix inverse (A121437) equals signed column k of matrix power: A107876^(k*(k+1)/2 + 3) for k>=0.

Examples

			Triangle begins:
1;
3, 1;
6, 4, 1;
10, 10, 6, 1;
15, 20, 21, 9, 1;
21, 35, 56, 45, 13, 1;
28, 56, 126, 165, 91, 18, 1;
36, 84, 252, 495, 455, 171, 24, 1;
45, 120, 462, 1287, 1820, 1140, 300, 31, 1; ...
		

Crossrefs

Cf. A121437 (inverse); variants: A098568, A122175, A122176.

Programs

  • Mathematica
    A122177[n_, k_] := Binomial[k*(k + 1)/2 + n - k + 2, n - k];
    Table[A122177[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jul 23 2024 *)
  • PARI
    T(n,k)=if(n
    				

A121441 Matrix inverse of triangle A121336, where A121336(n,k) = C( n*(n+1)/2 + n-k + 2, n-k) for n>=k>=0.

Original entry on oeis.org

1, -4, 1, 3, -6, 1, -12, 9, -9, 1, -117, -26, 26, -13, 1, -1656, -216, -69, 63, -18, 1, -28506, -3396, -294, -212, 132, -24, 1, -578274, -63116, -5766, -124, -620, 248, -31, 1, -13504179, -1365546, -116116, -8892, 1170, -1612, 429, -39, 1, -356633784, -33696726, -2696316, -186860, -15000, 6228, -3736
Offset: 0

Views

Author

Paul D. Hanna, Aug 29 2006

Keywords

Comments

A triangle having similar properties and complementary construction is the dual triangle A121437.

Examples

			Triangle, A121336^-1, begins:
1;
-4, 1;
3, -6, 1;
-12, 9, -9, 1;
-117, -26, 26, -13, 1;
-1656, -216, -69, 63, -18, 1;
-28506, -3396, -294, -212, 132, -24, 1;
-578274, -63116, -5766, -124, -620, 248, -31, 1;
-13504179, -1365546, -116116, -8892, 1170, -1612, 429, -39, 1; ...
Triangle A121412 begins:
1;
1, 1;
3, 1, 1;
18, 4, 1, 1;
170, 30, 5, 1, 1; ...
Row 3 of A121336^-1 equals row 3 of A121412^(-9), which begins:
1;
-9, 1;
18, -9, 1;
-12, 9, -9, 1; ...
Row 4 of A121336^-1 equals row 4 of A121412^(-13), which begins:
1;
-13, 1;
52, -13, 1;
-52, 39, -13, 1;
-117, -26, 26, -13, 1; ...
		

Crossrefs

Cf. A121336 (matrix inverse); A121412; variants: A121438, A121439, A121440; A121437 (dual).

Programs

  • PARI
    /* Matrix Inverse of A121336 */ {T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial(r*(r-1)/2+r-c+2,r-c)))); return((M^-1)[n+1,k+1])}

Formula

T(n,k) = [A121412^(-n*(n+1)/2 - 3)](n,k) for n>=k>=0; i.e., row n of A121336^-1 equals row n of matrix power A121412^(-n*(n+1)/2 - 3).
Showing 1-2 of 2 results.