A121441 Matrix inverse of triangle A121336, where A121336(n,k) = C( n*(n+1)/2 + n-k + 2, n-k) for n>=k>=0.
1, -4, 1, 3, -6, 1, -12, 9, -9, 1, -117, -26, 26, -13, 1, -1656, -216, -69, 63, -18, 1, -28506, -3396, -294, -212, 132, -24, 1, -578274, -63116, -5766, -124, -620, 248, -31, 1, -13504179, -1365546, -116116, -8892, 1170, -1612, 429, -39, 1, -356633784, -33696726, -2696316, -186860, -15000, 6228, -3736
Offset: 0
Examples
Triangle, A121336^-1, begins: 1; -4, 1; 3, -6, 1; -12, 9, -9, 1; -117, -26, 26, -13, 1; -1656, -216, -69, 63, -18, 1; -28506, -3396, -294, -212, 132, -24, 1; -578274, -63116, -5766, -124, -620, 248, -31, 1; -13504179, -1365546, -116116, -8892, 1170, -1612, 429, -39, 1; ... Triangle A121412 begins: 1; 1, 1; 3, 1, 1; 18, 4, 1, 1; 170, 30, 5, 1, 1; ... Row 3 of A121336^-1 equals row 3 of A121412^(-9), which begins: 1; -9, 1; 18, -9, 1; -12, 9, -9, 1; ... Row 4 of A121336^-1 equals row 4 of A121412^(-13), which begins: 1; -13, 1; 52, -13, 1; -52, 39, -13, 1; -117, -26, 26, -13, 1; ...
Crossrefs
Programs
-
PARI
/* Matrix Inverse of A121336 */ {T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial(r*(r-1)/2+r-c+2,r-c)))); return((M^-1)[n+1,k+1])}
Comments