cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121483 Number of peaks at odd level in all nondecreasing Dyck paths of semilength n. A nondecreasing Dyck path is a Dyck path for which the sequence of the altitudes of the valleys is nondecreasing.

Original entry on oeis.org

1, 2, 6, 19, 56, 167, 487, 1411, 4047, 11527, 32617, 91790, 257065, 716896, 1991792, 5515535, 15227846, 41930133, 115176023, 315676425, 863475561, 2357539227, 6425887551, 17487572124, 47522431681, 128969086382, 349567320762
Offset: 1

Views

Author

Emeric Deutsch, Aug 02 2006

Keywords

Comments

a(n) = Sum(k*A121481(n,k),k=0..n).

Examples

			a(2)=2 because in UDUD and UUDD we have altogether 2 peaks at odd level; here U=(1,1) and D=(1,-1).
		

Crossrefs

Programs

  • Maple
    G:=z*(1-z)*(1-3*z+6*z^3-3*z^4)/(1+z)/(1-3*z+z^2)^2/(1-z-z^2): Gser:=series(G,z=0,33): seq(coeff(Gser,z,n),n=1..30);
  • Mathematica
    Rest[CoefficientList[Series[x*(1-x)*(1-3*x+6*x^3-3*x^4)/(1+x)/(1-3*x+x^2)^2/(1-x-x^2), {x, 0, 20}], x]] (* Vaclav Kotesovec, Mar 20 2014 *)

Formula

G.f.: z(1-z)(1-3z+6z^3-3z^4)/[(1+z)(1-3z+z^2)^2*(1-z-z^2)].
Recurrence: (n^2 - 5*n - 20)*a(n) = (3*n^2 - 12*n - 79)*a(n-1) + (n^2 - 7*n - 16)*a(n-2) - (5*n^2 - 19*n - 138)*a(n-3) - (n^2 - 6*n - 31)*a(n-4) + (n^2 - 3*n - 24)*a(n-5). - Vaclav Kotesovec, Mar 20 2014
a(n) ~ (sqrt(5)-1) * (3+sqrt(5))^n * n / (5*2^(n+2)). - Vaclav Kotesovec, Mar 20 2014