A121504 Numerators of partial sums of a series used for the series of sqrt(2) + sqrt(3) involving Catalan numbers.
3, 53, 433, 13941, 111759, 1789509, 14320329, 916611309, 7333257267, 117334608047, 938685468127, 30038055403185, 240304869286059, 3844880951681069, 30759058568289097, 3937160132112061181
Offset: 0
Examples
Rationals r(n): [3, 53/16, 433/128, 13941/4096, 111759/32768, 1789509/524288, 14320329/4194304, 916611309/268435456,...].
Links
- G. C. Greubel, Table of n, a(n) for n = 0..830
- W. Lang, Rationals r(n), limit.
Programs
-
Magma
[Numerator( (&+[Binomial(2*k,k)*(1 + 2^(k+1))/(16^k*(k+1)): k in [0..n]]) ): n in [0..30]]; // G. C. Greubel, Sep 27 2018
-
Mathematica
Table[Numerator[Sum[CatalanNumber[k]*(1 + 2^(k + 1))/16^k, {k, 0, n}]], {n, 0, 50}] (* G. C. Greubel, Sep 27 2018 *)
-
PARI
for(n=0, 30, print1(numerator(sum(k=0,n, binomial(2*k,k)*(1 + 2^(k+1))/(16^k*(k+1)))), ", ")) \\ G. C. Greubel, Sep 27 2018
Formula
a(n) = numerator(r(n)) with r(n):= sum(C(k)*(1+2^(k+1))/16^k,k=0..n), n>=0, with C(k)=A000108(k) (Catalan numbers).
Comments