cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A121568 Fibonacci[ (p - 1)/2 ], where p = Prime[n].

Original entry on oeis.org

1, 1, 2, 5, 8, 21, 34, 89, 377, 610, 2584, 6765, 10946, 28657, 121393, 514229, 832040, 3524578, 9227465, 14930352, 63245986, 165580141, 701408733, 4807526976, 12586269025, 20365011074, 53316291173, 86267571272, 225851433717
Offset: 2

Views

Author

Alexander Adamchuk, Aug 07 2006

Keywords

Comments

p = Prime[n] divides a(n) = Fibonacci[(p-1)/2] for p = {29,41,61,89,101,109,149,181,229,241,269,281,349,381,...} = A033205[n] Primes of form x^2+5*y^2 excluding A033205[1] = 5.

Crossrefs

Programs

  • Mathematica
    Table[Fibonacci[(Prime[n]-1)/2],{n,2,50}]

Formula

a(n) = Fibonacci[ (Prime[n]-1)/2 ], n>1.

A121569 a(n) = Fibonacci((prime(n)+3)/2) - 1.

Original entry on oeis.org

1, 2, 4, 12, 20, 54, 88, 232, 986, 1596, 6764, 17710, 28656, 75024, 317810, 1346268, 2178308, 9227464, 24157816, 39088168, 165580140, 433494436, 1836311902, 12586269024, 32951280098, 53316291172, 139583862444, 225851433716
Offset: 2

Views

Author

Alexander Adamchuk, Aug 08 2006

Keywords

Comments

p = Prime[n] divides a(n) for p = {29,89,101,181,229,349,401,461,509,521,541,709,761,769,809,...} = A047650[n] Primes for which golden mean tau is a quadratic residue or Primes of the form x^2+20y^2.

Crossrefs

Programs

  • Mathematica
    Table[Fibonacci[(Prime[n]+3)/2]-1,{n,2,50}]

Formula

a(n) = Fibonacci[ (Prime[n]+3)/2 ] - 1, n>1. a(n) = Sum[ Fibonacci[k], {k,1,(p-1)/2} ], p = Prime[n], n>1.
Showing 1-2 of 2 results.