cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121572 Subprimorials: inverse binomial transform of primorials (A002110).

Original entry on oeis.org

1, 1, 3, 17, 119, 1509, 18799, 342397, 6340263, 151918421, 4619754311, 140219120601, 5396354613583, 221721908976697, 9431597787000999, 447473598316521449, 24163152239530299719, 1444153946379288324477, 87200644323074509092943, 5929294512595059362045041
Offset: 0

Views

Author

Keywords

Comments

By analogy with subfactorials, which are the inverse binomial transform of the factorials.

Examples

			a(3) = 30 - 3*6 + 3*2 - 1 = 17.
		

Crossrefs

See A079266 for a different definition of subprimorial.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, ithprime(n)*b(n-1)) end:
    a:= n-> add(binomial(n,k)*b(k)*(-1)^(n-k), k=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Sep 19 2016
  • Mathematica
    b[n_] := b[n] = If[n==0, 1, Prime[n]*b[n-1]]; a[n_] := Sum[Binomial[n, k]* b[k]*(-1)^(n-k), {k, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 13 2017, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) C(n,k) Prime(k)#, where p# is p primorial and Prime(0)# = 1.
A007318^(-1) * A002110. - Gary W. Adamson, Dec 14 2007

Extensions

More terms from R. J. Mathar, Sep 18 2007
Edited by N. J. A. Sloane, May 15 2008 at the suggestion of R. J. Mathar