A121572 Subprimorials: inverse binomial transform of primorials (A002110).
1, 1, 3, 17, 119, 1509, 18799, 342397, 6340263, 151918421, 4619754311, 140219120601, 5396354613583, 221721908976697, 9431597787000999, 447473598316521449, 24163152239530299719, 1444153946379288324477, 87200644323074509092943, 5929294512595059362045041
Offset: 0
Keywords
Examples
a(3) = 30 - 3*6 + 3*2 - 1 = 17.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..350
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, ithprime(n)*b(n-1)) end: a:= n-> add(binomial(n,k)*b(k)*(-1)^(n-k), k=0..n): seq(a(n), n=0..20); # Alois P. Heinz, Sep 19 2016
-
Mathematica
b[n_] := b[n] = If[n==0, 1, Prime[n]*b[n-1]]; a[n_] := Sum[Binomial[n, k]* b[k]*(-1)^(n-k), {k, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 13 2017, after Alois P. Heinz *)
Formula
a(n) = Sum_{k=0..n} (-1)^(n-k) C(n,k) Prime(k)#, where p# is p primorial and Prime(0)# = 1.
Extensions
More terms from R. J. Mathar, Sep 18 2007
Edited by N. J. A. Sloane, May 15 2008 at the suggestion of R. J. Mathar
Comments