A121617 Numbers n such that A022521(n-1) = n^5 - (n-1)^5 is prime.
2, 3, 6, 11, 17, 20, 25, 28, 31, 32, 35, 36, 42, 45, 47, 55, 58, 65, 67, 76, 79, 86, 88, 89, 100, 102, 105, 110, 111, 113, 121, 122, 145, 149, 166, 175, 179, 193, 198, 211, 218, 223, 226, 230, 240, 244, 245, 256, 262, 287, 292, 295, 297, 298, 300
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
select(t -> isprime(t^5-(t-1)^5), [$1..1000]); # Robert Israel, Jul 10 2018
-
Mathematica
Do[np5=n^5 - (n-1)^5; If[PrimeQ[np5],Print[n]],{n,1,100}] Flatten[Position[Partition[Range[300]^5,2,1],?(PrimeQ[#[[2]]-#[[1]]]&), 1,Heads-> False]]+1 (* _Harvey P. Dale, May 30 2021 *)
-
PARI
A121617(n,print_all=0)={for(k=2,9e9, ispseudoprime(k^5-(k-1)^5) & !(print_all & print1(k",")) & !n-- & return(k))} \\ M. F. Hasler, Feb 03 2013
Comments