A121636 Number of 2-cell columns starting at level 0 in all of deco polyominoes of height n. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.
0, 1, 5, 23, 122, 754, 5364, 43308, 391824, 3929616, 43287840, 519711840, 6755460480, 94527008640, 1416783432960, 22646604153600, 384576130713600, 6914404440115200, 131217341055897600, 2621176954176614400
Offset: 1
Keywords
Examples
a(2)=1 because the deco polyominoes of height 2 are the horizontal and vertical dominoes and only the vertical one has one 2-cell column starting at level 0.
Links
- E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.
- Brett Ferry, 100 Prisoners and a Light Bulb Riddle & Solution, Math Hacks, 2015.
Programs
-
Maple
a[1]:=0: a[2]:=1: for n from 3 to 23 do a[n]:=n*(n-2)!+(n-1)*a[n-1] od: seq(a[n],n=1..23);
Formula
a(1)=0, a(2)=1, a(n) = n(n-2)! + (n-1)*a(n-1) for n >= 3.
a(n) = Sum_{k=0..n-1} k*A121634(n,k).
a(n) = (n-1)!*(n^2-2n-1)/n + (n-1)!*(1/1 + 1/2 + ... + 1/n) (n >= 2). - Emeric Deutsch, Oct 22 2008
a(n) = (n-1)!*(h(n-1) + n - 2), n > 1, where h(n) = Sum_{k=1..n} 1/k. - Gary Detlefs, Oct 24 2010
a(n) = (n^2-3n+3)*(n-2)! + (n-1)*A000254(n-2), n > 2. - Ron L.J. van den Burg, Jan 19 2020
a(n+1) = (n-1)!*(n^2 + Sum_{k=1..n-1} k/(n-k)), n > 0. - Ron L.J. van den Burg, Jan 20 2020
Conjecture D-finite with recurrence a(n) +(-2*n+3)*a(n-1) +(n^2-5*n+7)*a(n-2) +(n-3)^2*a(n-3)=0. - R. J. Mathar, Jul 22 2022
Comments