cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121668 Products of consecutive Apery numbers, cf. A006221.

Original entry on oeis.org

5, 365, 105485, 47686445, 27027984005, 17576522979125, 12539718106476125, 9563891779602510125, 7671490770912738387125, 6401115462988077760992365, 5513180441777884868230908125, 4873728705609344219627834043125
Offset: 1

Views

Author

Angelo B. Mingarelli (amingare(AT)math.carleton.ca), Sep 10 2006

Keywords

Comments

The solutions x_{n-1}:=A_nA_{n-1}, y_n of the four-term recurrence relation defined by x_0=5, x_1= 365, x_2= 105485 and y_0= 0, y_1=8424, y_2= 2438709 are such that y_n/x_n -> 16*zeta(3)^2. Generalizations to products of three or more Apery numbers are to be found in the cited paper.

Examples

			16*y_9/x_9 = 23.11905277493814774261896124285261449340 while
16*zeta(3)^2=23.11905277493814774261896126091180523494.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(Binomial[n,k]*Binomial[n + k, k])^2, {k, 0, n}] * Sum[(Binomial[n-1, k] Binomial[n - 1 + k, k])^2, {k, 0, n-1}], {n, 1, 20}] (* Vaclav Kotesovec, Jul 11 2021 *)

Formula

Recurrence:
(n + 3)^3(n + 2)^6(2n + 1)(17n^2 + 17n + 5)z(n + 2) - (2n + 1)(17n^2 + \
17n + 5)(1155n^6 + 13860n^5 + 68535n^4 + 178680n^3 + 259059n^2 + \
198156n + 62531)(n + 2)^3z(n + 1) + (2n + 5)(17n^2 + 85n + 107)(1155n^6 \
+ 6930n^5 + 16560n^4 + 20040n^3 + 12954n^2 + 4308n + 584)(n + 1) ^3z(n) \
- n^3(n + 1)^6(2n + 5)(17n^2 + 85n + 107)z(n - 1) = 0
a(n) ~ (1 + sqrt(2))^(8*n) / (2^(9/2) * Pi^3 * n^3). - Vaclav Kotesovec, Jul 11 2021