A121679
a(n) = A121678(n)/(n+1) = [x^n] (1 + x*(1+x)^n )^(n+1) / (n+1).
Original entry on oeis.org
1, 1, 3, 13, 85, 706, 7042, 81887, 1081257, 15911488, 257476901, 4533396418, 86110501919, 1752312402881, 37982176570353, 872648321081531, 21162807249523025, 539772371783003416, 14433746294326451095
Offset: 0
At n=5, a(5) = [x^5] (1 + x*(1+x)^5)^6/6 = 4236/6 = 706, since
(1+x*(1+x)^5)^6 = 1 + 6*x + 45*x^2 + 230*x^3 + 1050*x^4 + 4236*x^5 +...
-
Table[Sum[Binomial[n+1,k] * Binomial[n*k,n-k] / (n+1), {k,0,n+1}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 12 2015 *)
-
a(n)=sum(k=0,n+1,binomial(n+1,k)*binomial(n*k,n-k))/(n+1)
A121676
a(n) = [x^n] (1 + x*(1+x)^(n-1) )^(n+1).
Original entry on oeis.org
1, 2, 6, 32, 250, 2412, 27524, 360600, 5296050, 85805420, 1515794467, 28926900312, 591903009295, 12907255696636, 298428274844730, 7284351640977920, 187013495992710210, 5033669346061547724, 141643700005223732471
Offset: 0
At n=4, a(4) = [x^4] (1 + x*(1+x)^3 )^5 = 250, since
(1 + x*(1+x)^3 )^5 = 1 + 5*x + 25*x^2 + 85*x^3 + 250*x^4 +...
-
a(n)=sum(k=0,n+1,binomial(n+1,k)*binomial((n-1)*k,n-k))
A121677
a(n) = A121676(n)/(n+1) = [x^n] (1 + x*(1+x)^(n-1) )^(n+1) / (n+1).
Original entry on oeis.org
1, 1, 2, 8, 50, 402, 3932, 45075, 588450, 8580542, 137799497, 2410575026, 45531000715, 921946835474, 19895218322982, 455271977561120, 11000793881924130, 279648297003419318, 7454931579222301709
Offset: 0
At n=4, a(4) = [x^4] (1 + x*(1+x)^3 )^5/5 = 250/5 = 50, since
(1 + x*(1+x)^3 )^5 = 1 + 5*x + 25*x^2 + 85*x^3 + 250*x^4 +...
-
Flatten[{1,Table[Sum[Binomial[n+1,k] * Binomial[(n-1)*k,n-k] / (n+1), {k,0,n+1}], {n, 1, 20}]}] (* Vaclav Kotesovec, Jun 12 2015 *)
-
a(n)=sum(k=0,n+1,binomial(n+1,k)*binomial((n-1)*k,n-k))/(n+1)
Showing 1-3 of 3 results.
Comments