cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A131338 Triangle, read by rows of n*(n+1)/2 + 1 terms, that starts with a '1' in row 0 with row n consisting of n '1's followed by the partial sums of the prior row.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 5, 1, 1, 1, 1, 1, 2, 3, 4, 6, 9, 14, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 20, 29, 43, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 8, 11, 15, 20, 27, 37, 51, 71, 100, 143, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 9, 12, 16, 21, 27, 35, 46, 61, 81, 108, 145, 196
Offset: 0

Views

Author

Paul D. Hanna, Jun 29 2007

Keywords

Examples

			Triangle begins:
1;
1, 1;
1,1, 1,2;
1,1,1, 1,2,3,5;
1,1,1,1, 1,2,3,4,6,9,14;
1,1,1,1,1, 1,2,3,4,5,7,10,14,20,29,43;
1,1,1,1,1,1, 1,2,3,4,5,6,8,11,15,20,27,37,51,71,100,143;
1,1,1,1,1,1,1, 1,2,3,4,5,6,7,9,12,16,21,27,35,46,61,81,108,145,196,267,367,510; ...
Row sums equal the row sums (A098569) of triangle A098568,
where A098568(n, k) = binomial( (k+1)*(k+2)/2 + n-k-1, n-k):
1;
1, 1;
1, 3, 1;
1, 6, 6, 1;
1, 10, 21, 10, 1;
1, 15, 56, 55, 15, 1;
1, 21, 126, 220, 120, 21, 1; ...
		

Crossrefs

Cf. A098568, A098569 (row sums), A121690, A183202.
Cf. A214403 (variant).

Programs

  • PARI
    T(n,k)=if(k>n*(n+1)/2 || k<0,0,if(k<=n,1,sum(i=0,k-n,T(n-1,i))))
    for(n=0, 10, for(k=0, n*(n+1)/2, print1(T(n, k), ", ")); print(""))

Formula

T(n,k) = Sum_{i=0..k-n} T(n-1,i) for k>n, else T(n,k)=1 for n>=k>=0.
Right border: T(n+1, (n+1)*(n+2)/2) = A098569(n) = Sum_{k=0..n} C( (k+1)*(k+2)/2 + n-k-1, n-k).
T(n, n*(n-1)/2 + 1) = Sum_{k=0..n-1} C(k*(k+1)/2, n-k) = A121690(n-1) for n>=1. - Paul D. Hanna, Aug 30 2007

A157133 G.f. satisfies: A(x) = Sum_{n>=0} x^(n(n+1)/2) * A(x)^n.

Original entry on oeis.org

1, 1, 1, 2, 4, 7, 14, 30, 62, 129, 278, 604, 1313, 2883, 6386, 14203, 31733, 71272, 160725, 363670, 825653, 1880351, 4293985, 9830499, 22558939, 51880565, 119552907, 276012657, 638348123, 1478749229, 3430799333, 7971134523
Offset: 0

Views

Author

Paul D. Hanna, Feb 24 2009

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 7*x^5 + 14*x^6 + 30*x^7 +...
A(x)^2 = 1 + 2*x + 3*x^2 + 6*x^3 + 13*x^4 + 26*x^5 + 54*x^6 +...
A(x)^3 = 1 + 3*x + 6*x^2 + 13*x^3 + 30*x^4 + 66*x^5 + 145*x^6 +...
A(x)^4 = 1 + 4*x + 10*x^2 + 24*x^3 + 59*x^4 + 140*x^5 + 326*x^6 +...
where
A(x) = 1 + x*A(x) + x^3*A(x)^2 + x^6*A(x)^3 + x^10*A(x)^4 +...
		

Crossrefs

Cf. A121690. [From Paul D. Hanna, Apr 25 2010]

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,(A=sum(m=0,sqrtint(2*n+1),x^(m*(m+1)/2)*A^m)));polcoeff(A,n)}

Formula

Contribution from Paul D. Hanna, Apr 25 2010: (Start)
G.f. A(x) satisfies the continued fraction:
A(x) = 1/(1- x*A(x)/(1- (x^2-x)*A(x)/(1- x^3*A(x)/(1- (x^4-x^2)*A(x)/(1- x^5*A(x)/(1- (x^6-x^3)*A(x)/(1- x^7*A(x)/(1- (x^8-x^4)*A(x)/(1- ...)))))))))
due to an identity of a partial elliptic theta function.
(End)

A326424 G.f. A(x) satisfies: Sum_{n>=0} A(x)^(n*(n+1)/2) * x^n = Sum_{n>=0} (1+x)^(n*(n-1)/2) * x^n.

Original entry on oeis.org

1, 0, 1, 0, 3, 4, 20, 62, 251, 1002, 4295, 19086, 88369, 423957, 2104214, 10783054, 56969183, 309900293, 1733790827, 9965992962, 58801256594, 355808106682, 2206237014216, 14007443494601, 90994768741426, 604395083728629, 4101881493676885, 28426771732773415, 201044377117957190, 1450195412613951590, 10663346917944740350, 79885242459500736025
Offset: 0

Views

Author

Paul D. Hanna, Jul 03 2019

Keywords

Examples

			G.f.: A(x) = 1 + x^2 + 3*x^4 + 4*x^5 + 20*x^6 + 62*x^7 + 251*x^8 + 1002*x^9 + 4295*x^10 + 19086*x^11 + 88369*x^12 + 423957*x^13 + 2104214*x^14 + ...
such that the following series are equal
B(x) = 1 + A(x)*x + A(x)^3*x^2 + A(x)^6*x^3 + A(x)^10*x^4 + A(x)^15*x^5 + A(x)^21*x^6 + A(x)^28*x^7 + A(x)^36*x^8 + A(x)^45*x^9 + ...
and
B(x) = 1 + x + (1+x)*x^2 + (1+x)^3*x^3 + (1+x)^6*x^4 + (1+x)^10*x^5 + (1+x)^15*x^6 + (1+x)^21*x^7 + (1+x)^28*x^8 + (1+x)^36*x^9 + ...
where
B(x) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 10*x^5 + 27*x^6 + 81*x^7 + 262*x^8 + 910*x^9 + 3363*x^10 + 13150*x^11 + 54135*x^12 + ... + A121690(n-1)*x^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0); A[#A]=polcoeff( sum(m=0,#A, x^m*(1+x +x*O(x^#A))^(m*(m-1)/2) - x^m*Ser(A)^(m*(m+1)/2) ),#A)); A[n+1]}
    for(n=0,35,print1(a(n),", "))

A325298 G.f. A(x) satisfies: Sum_{n>=0} x^(n*(n+1)/2) * A(x)^n = Sum_{n>=0} x^n * (1+x)^(n*(n+1)/2).

Original entry on oeis.org

1, 2, 3, 6, 17, 56, 189, 673, 2561, 10321, 43612, 192439, 884702, 4227202, 20942697, 107363291, 568547892, 3105231155, 17467413871, 101069173004, 600841031279, 3665958252167, 22933712331957, 146968161483626, 963973640814332, 6466300466801210, 44327544752355141, 310325239786656220, 2217191324979383686, 16157187739844358535, 120020165206009363396, 908305634422244782653, 6999639387956913535113
Offset: 0

Views

Author

Paul D. Hanna, Apr 28 2019

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 3*x^2 + 6*x^3 + 17*x^4 + 56*x^5 + 189*x^6 + 673*x^7 + 2561*x^8 + 10321*x^9 + 43612*x^10 + 192439*x^11 + 884702*x^12 + ...
such that the following series are equal
B(x) = 1 + x*A(x) + x^3*A(x)^2 + x^6*A(x)^3 + x^10*A(x)^4 + x^15*A(x)^5 + x^21*A(x)^6 + x^28*A(x)^7 + x^36*A(x)^8 + x^45*A(x)^9 + ...
B(x) = 1 + x*(1+x) + x^2*(1+x)^3 + x^3*(1+x)^6 + x^4*(1+x)^10 + x^5*(1+x)^15 + x^6*(1+x)^21 + x^7*(1+x)^28 + x^8(1+x)^36 + x^9*(1+x)^45 + ...
where
B(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 27*x^5 + 81*x^6 + 262*x^7 + 910*x^8 + 3363*x^9 + 13150*x^10 + 54135*x^11 + 233671*x^12 + ... + A121690(n)*x^n + ...
		

Crossrefs

Cf. A121690.

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);
    A[#A] = -polcoeff( sum(m=0,#A, x^(m*(m+1)/2)*Ser(A)^m - x^m*(1+x +x*O(x^#A) )^(m*(m+1)/2) ),#A) );A[n+1]}
    for(n=0,35,print1(a(n),", "))

A384832 G.f. A(x) = Sum_{n>=0} x^n * Product_{k=0..n} ((1+x)^(n-k+1) - x^k).

Original entry on oeis.org

1, 2, 4, 13, 41, 144, 533, 2072, 8463, 36142, 160852, 744491, 3576342, 17796825, 91587499, 486686277, 2666612930, 15045088274, 87301643726, 520416443472, 3183640482658, 19967208261651, 128273336978302, 843360769602607, 5670286993205471, 38957428760628861, 273318099568893757, 1956848333035887861
Offset: 1

Views

Author

Paul D. Hanna, Jun 29 2025

Keywords

Examples

			G.f.: A(x) = x + 2*x^2 + 4*x^3 + 13*x^4 + 41*x^5 + 144*x^6 + 533*x^7 + 2072*x^8 + 8463*x^9 + 36142*x^10 + 160852*x^11 + 744491*x^12 + ...
where
A(x) = 1 * ((1+x) - 1) +
  x * ((1+x)^2 - 1)*((1+x) - x) +
  x^2 * ((1+x)^3 - 1)*((1+x)^2 - x)*((1+x) - x^2) +
  x^3 * ((1+x)^4 - 1)*((1+x)^3 - x)*((1+x)^2 - x^2)*((1+x) - x^3) +
  x^4 * ((1+x)^5 - 1)*((1+x)^4 - x)*((1+x)^3 - x^2)*((1+x)^2 - x^3)*((1+x) - x^4) +
  x^5 * ((1+x)^6 - 1)*((1+x)^5 - x)*((1+x)^4 - x^2)*((1+x)^3 - x^3)*((1+x)^2 - x^4)*((1+x) - x^5) +
  x^6 * ((1+x)^7 - 1)*((1+x)^6 - x)*((1+x)^5 - x^2)*((1+x)^4 - x^3)*((1+x)^3 - x^4)*((1+x)^2 - x^5)*((1+x) - x^6) + ...
equivalently,
A(x) = x +
  (2*x^2 + x^3) +
  (3*x^3 + 9*x^4 + 10*x^5 + 5*x^6 - 2*x^7 - 3*x^8 - x^9) +
  (4*x^4 + 26*x^5 + 78*x^6 + 139*x^7 + 147*x^8 + 73*x^9 - 25*x^10 - 65*x^11 - 45*x^12 - 15*x^13 - 2*x^14) +
  (5*x^5 + 55*x^6 + 290*x^7 + 965*x^8 + 2226*x^9 + 3689*x^10 + 4378*x^11 + 3463*x^12 + 1184*x^13 - 1161*x^14 - 2296*x^15 - 2002*x^16 - 1034*x^17 - 239*x^18 + 85*x^19 + 102*x^20 + 44*x^21 + 10*x^22 + x^23) +
  (6*x^6 + 99*x^7 + 794*x^8 + 4099*x^9 + 15185*x^10 + 42667*x^11 + 93837*x^12 + 164301*x^13 + 229972*x^14 + 253682*x^15 + 208380*x^16 + 100483*x^17 - 28293*x^18 - 125093*x^19 - 157729*x^20 - 130285*x^21 - 73656*x^22 - 21858*x^23 + 7068*x^24 + 14241*x^25 + 10381*x^26 + 4903*x^27 + 1605*x^28 + 355*x^29 + 48*x^30 + 3*x^31) + ...
		

Crossrefs

Cf. A121690.

Programs

  • PARI
    {a(n) = my(A = sum(m=0,n, x^m * prod(k=0,m, (1+x)^(m-k+1) - x^k +x*O(x^n)) )); polcoef(A,n)}
    for(n=1,30,print1(a(n),", "))
Showing 1-5 of 5 results.