A121694 Sum of the vertical heights (i.e., number of rows) of all deco polyominoes of height n.
1, 3, 12, 61, 377, 2734, 22671, 211035, 2175754, 24592551, 302295925, 4014475756, 57277225309, 873819665135, 14195291340656, 244657733062761, 4459137940238245, 85694418205589534, 1731893273528613811, 36721566227335477047, 815098440677104096866
Offset: 1
Keywords
Examples
a(2)=3 because the deco polyominoes of height 2 are the horizontal and vertical dominoes, having, respectively, 1 and 2 rows.
Links
- E. Barcucci, S. Brunetti, and F. Del Ristoro, Succession rules and deco polyominoes, Theoret. Informatics Appl., 34, 2000, 1-14.
- E. Barcucci, A. Del Lungo, and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.
Crossrefs
Cf. A121692.
Programs
-
Maple
with(linalg): a:=proc(i,j) if i=j then i elif i>j then 1 else 0 fi end: p:=proc(Q) local n,A,b,w,QQ: n:=degree(Q): A:=matrix(n,n,a): b:=j->coeff(Q,t,j): w:=matrix(n,1,b): QQ:=multiply(A,w): sort(expand(add(QQ[k,1]*t^k,k=1..n)+t*Q)): end: P[1]:=t: for n from 2 to 22 do P[n]:=p(P[n-1]) od: seq(subs(t=1,diff(P[n],t)),n=1..22);
-
Mathematica
(* T is A121692 *) T[n_, k_] := T[n, k] = Which[k == 1, 1, k == n, 1, k > n, 0, True, k*T[n-1, k] + 2*T[n-1, k-1] + Sum[T[n-1, j], {j, 1, k-2}]]; a[n_] := Sum[k*T[n, k], {k, 1, n}]; Table[a[n], {n, 1, 21}] (* Jean-François Alcover, Aug 20 2024 *)
Comments