cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A230556 Number of involutions avoiding the pattern 4231.

Original entry on oeis.org

1, 1, 2, 4, 9, 21, 51, 128, 327, 858, 2272, 6146, 16716, 46246, 128414, 361493, 1020506, 2913060, 8335405, 24067930, 69646035
Offset: 0

Views

Author

Cheyne Homberger, Oct 23 2013

Keywords

Examples

			Of the 26 involutions of length 5, only 53241, 42315, 52431, 52341, and 15342 contain the pattern 4231, so a(5) = 21.
		

Crossrefs

A230551 Number of involutions avoiding the pattern 2431.

Original entry on oeis.org

1, 2, 4, 10, 24, 62, 154, 396, 992, 2536, 6376, 16238, 40914, 103954, 262298, 665478, 1680726, 4260262, 10766470, 27274444
Offset: 1

Views

Author

Cheyne Homberger, Oct 23 2013

Keywords

Examples

			Of the 26 involutions of length 26, only 35142 and 52431 contain the pattern 2431, so a(5) = 24.
		

Crossrefs

A121703 Number of alternating separable permutations.

Original entry on oeis.org

1, 2, 4, 8, 20, 48, 132, 344, 996, 2720, 8132, 22888, 69940, 201040, 624132, 1822136, 5725124, 16915008, 53648772, 160012232, 511360340, 1536928624, 4942300804, 14949122328, 48322714020, 146946942688, 477105960772, 1457491035944, 4750171491956, 14568377075344
Offset: 1

Views

Author

Vincent Vatter, Aug 16 2006

Keywords

Comments

The separable permutations are those avoiding 2413 and 3142 and are counted by the large Schroeder numbers (A006318). The alternating permutations are counted by the Euler numbers (A000111).

Examples

			a(4)=8 because of the 10 alternating permutations of length 4, 2413 and 3142 are not separable.
		

Crossrefs

Cf. A121704.

Programs

  • Mathematica
    nmax = 40; aa = ConstantArray[0, nmax]; aa[[1]] = 1; aa[[2]] = 2; Do[f = Sum[aa[[k]]*x^k, {k, 1, j - 1}] + koef*x^j; sol = Solve[SeriesCoefficient[f^3 - (2*x^2 - 5*x + 4)*f^2 - (4*x^3 + x^2 - 8*x)*f - (2*x^4 + 5*x^3 + 4*x^2), {x, 0, j + 2}] == 0, koef][[1]]; aa[[j]] = koef /. sol[[1]], {j, 3, nmax}]; aa (* Vaclav Kotesovec, Jul 07 2024 *)

Formula

G.f. satisfies f^3-(2x^2-5x+4)f^2-(4x^3+x^2-8x)f-(2x^4+5x^3+4x^2)=0.

Extensions

a(13) and beyond corrected by Vaclav Kotesovec, Jul 07 2024

A230552 Number of involutions avoiding the pattern 2341.

Original entry on oeis.org

1, 2, 4, 10, 25, 66, 170, 441, 1124, 2870, 7273, 18477, 46825, 118917, 301734, 766525, 1946293, 4944614, 12557685
Offset: 1

Views

Author

Cheyne Homberger, Oct 23 2013

Keywords

Examples

			Of the 26 involutions of length 5, only 52341 contains the pattern 2341, so a(5) = 25.
		

Crossrefs

A230555 Number of involutions avoiding 3421.

Original entry on oeis.org

1, 1, 2, 4, 10, 25, 66, 173, 460, 1218, 3240, 8602, 22878, 60794, 161668, 429752, 1142758, 3038173, 8078606, 21479469, 57113888
Offset: 0

Views

Author

Cheyne Homberger, Oct 23 2013

Keywords

Examples

			Of the 26 involutions of length 5, only 45312 contains the pattern 3421, so a(5) = 25.
		

Crossrefs

A230553 Number of involutions avoiding the pattern 1342.

Original entry on oeis.org

1, 1, 2, 4, 10, 24, 62, 156, 406, 1040, 2714, 7012, 18322, 47560, 124358, 323708, 846766, 2208032, 5777330, 15082372, 39469786
Offset: 0

Views

Author

Cheyne Homberger, Oct 23 2013

Keywords

Examples

			Of the 26 involutions of length 5, only 14523 and 15342 contain the pattern 1342, so a(5) = 24.
		

Crossrefs

A230554 Number of involutions avoiding the pattern 1324.

Original entry on oeis.org

1, 1, 2, 4, 9, 21, 51, 126, 321, 820, 2160, 5654, 15272, 40758, 112280, 304471, 852164, 2341980, 6640755, 18460066, 52915999
Offset: 0

Views

Author

Cheyne Homberger, Oct 23 2013

Keywords

Examples

			Of the 26 involutions of length 5, only 21435, 13254, 13245, 14325, and 12435 contain the pattern 1324, so a(5) = 21.
		

Crossrefs

Showing 1-7 of 7 results.